High fidelity simulation of continuous correlated sea clutter with long-term space-time correlation characteristics has always been a challenge. A memoryless nonlinear transform (MNLT) based sea clutter intensity simulation followed by a continuous phase retrieval method based on alternating projections (AP) algorithm provides a kind of solution with promising performance. In this paper, a recursive algorithm is proposed which can be used to replace the fast Fourier transform (FFT) for long-term sea clutter phase retrieval under the constrain of the desired time-varying Doppler spectra. Simulation results based on the parameter estimation of Council for Scientific and Industrial Research (CSIR) Fynmeet radar data demonstrate that the proposed recursive algorithm generates complex sea clutter data with exact space-time correlation characteristics as specified, while with much less calculation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.