A liquid crystal (LC) phase grating devices have been studied actively because of their outstanding features, such as the high diffraction efficiency, large diffraction angle, no diffraction at the initial state, and the simple fabrication process. It can be used to control the haze value owing to its high diffraction efficiency. Although it can be operated with low power, power consumption needs to be further reduced because it requires power to maintain the diffraction. To reduce the power consumption in a phase grating device, bistable operation, which consumes power only while it is being switched between the states, is necessary. In this paper, we will introduce bistable LC phase grating devices which can provide a translucent state with a high haze value thanks to its strong diffraction. Moreover, it can be operated with very low power as the transparent [translucent] state is maintained even after the applied vertical [in-plane] electric field is removed. We believe that these devices can be one of the new candidates for power-saving smart window or window display applications.
Liquid crystal (LC) devices have been used for smart window and see-through display applications. Especially, LC devices which can be used to control the haze value have been studied for smart window applications. LC devices with the polymer structure, such as polymer-dispersed and polymer-stabilized LC cells, can be used to control the haze value. However, for wider applications, it is urgent to overcome disadvantages, such as the high operating voltage, low transmittance in the transparent state, and narrow viewing angle because of the index mismatch between the LC and polymer structure. In this paper, we introduce LC devices based on the electro-hydrodynamic effect. They can provide a high haze in the translucent state because of the turbulence caused by the electro-hydrodynamic effect. They can provide a high transmittance in the transparent state and wide viewing angle because it does not contain any polymer structure. We believe that LC devices based on the electro-hydrodynamic effect can be an excellent candidate for smart window applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.