Self-assembled In(Ga)As quantum dot (QD) lasers incorporating p-type modulation doping have generated much interest recently due to reports of a temperature insensitive threshold current and increased modulation bandwidth. The mechanism by which p-type doping improves the performance of QD lasers is thought to be similar to that envisaged for quantum well lasers, where increased gain is expected for a given quasi-Fermi level separation due to a shift in both quasi-Fermi levels towards the valence states. However, the benefits may be much more pronounced in quantum dot structures since the population of the smaller number of dot states can be dramatically affected using relatively low doping levels, which may incur less penalty with regard to increased non-radiative recombination and internal optical mode loss. We present results of direct measurements of the modal gain measured as a function of the quasi-Fermi level separation for samples with different degrees of doping, which demonstrate unambiguously the increased gain that can be obtained at a fixed quasi-Fermi level separation. In addition, we have measured the internal optical mode loss and radiative and non-radiative recombination currents for samples containing 0, 15 and 50 dopant atoms per dot and show that, although the internal optical mode loss is similar for all three samples, the non-radiative recombination current increases for samples containing p-doping. We show that our experimental results are consistent with a simple computer simulation of the operation of our structures.
We have measured the pulsed light-current characteristics of a series of InGaN/GaN quantum well light-emitting diodes which were annealed post-growth at different temperatures as a function of their operating temperature. The light output at a fixed current density increases with the temperature of measurement, reaches a maximum and then decreases for all the diodes. The measurement temperature at which the maximum light output occurs and the magnitude of the light output depend on the post-growth thermal anneal temperature. The thermal anneal temperature is thought to affect the acceptor concentration in the p-doped cap layer, which also changes the carrier mobility. A simulation, incorporating carrier leakage, is used to reproduce the experimental behavior where the acceptor concentration is changed to represent the effects of the different anneal temperatures.
We have experimentally observed the time evolution of the photoluminescence spectra of InGaN/GaN quantum wells with widths 3 and 4 nm in response to pulsed excitation at room temperature. We find that for both well widths the time evolution of the energy-integrated photoluminescence increases initially then decays and the spectrum displays a blue shift of the peak energy which then reverses. Through an iterative simulation of the carrier density, piezoelectric field and radiative recombination rate we calculate the behavior of these quantum well systems and find good agreement with the experimental data. The internal field present in the InGaN/GaN system is screened as carrier density increases, which combined with band filling and coulomb interactions result in a blue shift as the system is pumped and as recombination of the carriers occur a red shift is simulated. Although screening of the internal fields occurs our calculations show that at laser threshold there is still a large internal field present, 1.0 MVcm-1, which is 75 % of the unscreened value.
In this paper we summarize recent developments in the experimental study of the intrinsic gain and recombination characteristics of GaInP quantum wells. Derivation of gain spectra from spontaneous emission spectra observed through a top-contact window is limited to radiation of TE polarization an dit is necessary to assume the carrier system is in quasi equilibrium to calibrate the data into real units. These difficulties are overcome by deriving the gain and spontaneous emission spectra from the amplified spontaneous emission spectra observed from the end of the structure as a function of the pumped stripe length. The emission spectra can be calibrated by identifying the region where the carrier distributions are fully inverted, without assuming that quasi-equilibrium conditions are established. We have determined the modal gain and spontaneous emission spectra for both TE and TM polarization for a tensile strained GaInP quantum well structure, and have obtained the TM and TEy gains as functions of the total experimentally-determined radiative recombination current.
We validate a microscopic laser model based on the quantum kinetic equations using experimentally determined threshold current, gain, spontaneous emission and quasi-Fermi level separation data taken on GaInP/AlGaInP lasers. By comparison of further experimental and calculated optical properties we find that there is a significant contribution to the threshold current from non-radiative recombination within the quantum wells.
We describe a single-pass technique for the independent measurement of optical modal gain and internal mode loss in semiconductor lasers structures using a single, multi-section device which gives the loss and the gain spectrum in absolute units and over a wide current range. Comparison of the transverse electric and transverse magnetic polarized gain spectra also identifies the transparency point, provides the quasi-Fermi level energy separation and a second means for determination of the mode loss. Measurements are described for AlGaInP quantum well laser structures with emission wavelengths close to 670 nm, yielding an internal loss of 10 cm-1 and peak gain values up to 4000 cm-1 for current densities up to 4 kAcm-2. We have also made an independent measurement of the spontaneous emission spectrum through a top-contact window on the same device structure and have converted this to local gain using the usual thermodynamical relationship. By this means we have been able to confirm the validity of this relation between gain and emission for excited semiconductor structures of this type.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.