Holographic reconstruction algorithms based on wave propagation require the object’s Z-plane location. The location is determined manually by selecting an image from a set of reconstructed images over a range of Z-planes. We evaluate five autofocus metrics; the standard deviation of Laplacian and Sobel edge detectors, sum of darkest 2% of pixels, sum of the difference of adjacent reconstructed images (DAMP method), and product of the variance of two orthogonal Gabor filters. The metrics were tested on ten classes of plankton collected from field deployments of a submersible digital holographic imaging system (HOLOCAM). Our results indicate that Gabor filters provide the best focus metric performance, correctly predicting focus distance with +/- 100 um for 78% of the images (n=687). The performance of each metric is significantly dependent on the plankton class, from 46% for the round Coscinodiscus class to 100% for the Thalassionema nitzschoid class using the Gabor focus metric. Focus metric waveform analysis provides a prediction confidence to eliminate images likely to produce erroneous Z predictions. Applying focus metrics to reconstructed image segments substantially containing the object greatly improves the performance of the DAMP method. While Gabor filters are the most computationally intensive focus metric evaluated, the Gabor focus metric curves are relatively smooth and unimodal, enabling iterative search methods to reduce the number of reconstructions required to determine focus.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.