KEYWORDS: Luminescence, High angular resolution imaging, Anisotropy, Photonics systems, Gallium nitride, Electron beams, Scanning electron microscopy, Metamaterials, Electron microscopes
The photonic band structure of plasmonic and nanophotonic materials and devices can be controlled by physical features much smaller than the optical diffraction limit. We present a methodology to correlate nanoscale structure to the photonic band structure directly using the cathodoluminescence (CL) signal generated by a sample in the scanning electron microscope. Further to conventional electron microscope imaging, we record the wavelength- and angular- distributions of luminescence in a highly-parallelized manner. The result is a wavelength- and angle- resolved data cube, which was transformed to observe the emission intensity in the energy-momentum basis revealing the photonic band structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.