Cell counting and tracking approaches are widely used in microscopy image processing. Cells may be of different shapes and may be very crowded or relatively close together. In both cases, the correct identification of each cell requires the detection and tracking of its contour. But, this is not always possible due to noise, image blurring from signal degradation during the acquisition process and staining problems. Generally, cell segmentation approaches use filtering techniques, Hough transform, combined with morphological operators to address this problem. However, usually, not all contours can be closed. Therefore, heuristic contour closing techniques have been employed to achieve better results. Despite being necessary, no comparative studies on this type of methods were found in the literature. For that reason, this paper compares three approaches to contour tracking and closing. Two of them use one end of a contour as a starting point and trace a path along the edge of the cell seeking to find another endpoint of the cell. This is done using the first or second ring of neighboring pixels around the starting point. The heuristics used are based on region growing taking the information from the first or second ring of neighboring pixels and keeping the direction along the plotted path. The third method employs a modification of Dijkstra's algorithm. This approach employs two seed points located at each possible end of the contour. This paper presents a description of these techniques and evaluates the results in microscopy images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.