In this study we analyze the effect of experimental errors on the optimization and calibration method of a Mueller matrix imaging polarimeter based on liquid crystal variable retarders. The study is carried out through numerical simulations, where the optimized Mueller matrix polarimeter is simulated considering misalignments of the polarimetric components, and variations in the induced retardance of the LCVRs. However, the final measurement error does not depend only on non-ideal elements, but also depends on the noise, in the irradiance measurements, and the accuracy of the calibration method. Thus, the eigenvalue calibration method is used in the simulations, including random variations in the irradiance matrix. The tolerances of the optimization and calibration method are analyzed, and the results are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.