Manual optimization of experimental parameters can quickly become too complex and time-consuming if more than a few correlated parameters need to be adjusted. We discuss automating this process using Bayesian optimization. This machine learning-based method is particularly suitable because it can handle noisy measurements, performs a global search and requires relatively few experimental runs. We discuss the efficient, scalable implementation of Bayesian optimization, present practical applications for tuning experimental parameters, and compare it with other local and global heuristic methods to show its application range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.