Our experiments at beamline 5.3.1 of the Advanced Light Source feature a 45-cm long x-ray deformable mirror (XDM). We describe the experiment and present recent results in two areas. First, we directly image the 3 keV x-ray beam and demonstrate customized shaping of its intensity in the near field. Detailed physics simulations of the experiment agree very well with actual measurements. Second, we use a grating interferometer to measure known figure errors applied to the surface of the XDM. A relative height change on the XDM of 2.5 nm RMS is measured at an SNR of eight in single measurement. A provisional error budget analysis indicates that uncalibrated errors in the system are by far the largest component.
Geometrically enhanced photocathodes are currently being developed for use in applications that seek to improve detector efficiency in the visible to X-ray ranges. Various photocathode surface geometries are typically chosen based on the detector operational wavelength region, along with requirements such as spatial resolution, temporal resolution and dynamic range. Recently, a structure has been identified for possible use in the X-ray region. This anisotropic high aspect ratio structure has been produced in silicon using inductively coupled plasma (ICP) etching technology. The process is specifically developed with respect to the pattern density and geometry of the photocathode chip to achieve the desired sidewall profile angle. The tapered sidewall profile angle precision has been demonstrated to be within ± 2.5° for a ~ 12° wall angle, with feature sizes that range between 4-9 μm in diameter and 10-25 μm depth. Here we discuss the device applications, design and present the method used to produce a set of geometrically enhanced high yield X-ray photocathodes in silicon.
Fernando Sannibale, Daniele Filippetto, Houjun Qian, Christos Papadopoulos, Russell Wells, Toby Kramasz, Howard Padmore, Jun Feng, James Nasiatka, Ruixuan Huang, Max Zolotorev, John Staples
After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.
J. Feng, W. Wan, J. Qiang, A. Bartelt, A. Comin, A. Scholl, J. Byrd, R. Falcone, G. Huang, A. MacPhee, J. Nasiatka, K. Opachich, D. Weinstein, T. Young, H. Padmore
An ultrafast x-ray streak camera is under development at LBNL for application primarily to studies of ultrafast magnetization dynamics. In initial work, a temporal resolution of 900fs in accumulative mode at 5 KHz has been achieved. These results and methods currently being developed to improve the resolution and repetition rate are resented. One of the primary limits to temporal resolution is caused by the finite energy width of the electron distribution from the photocathode. The positive time of flight dispersion with energy in the accelerating region of the camera can be countered by introduction of downstream optics that give negative time of flight dispersion with energy, leading to an approximate overall cancellation of this temporal aberration. Initial results of an end-to-end simulation model using the full photoelectron distribution are presented.
The spin dynamics of ferromagnetic thin films following an excitation by ultrashort 100-fs near-infrared laser pulses has recently received much attention. Here, a new approach is described using x-ray magnetic circular dichroism to investigate demagnetization and magnetization switching processes. In contrast to magneto-optical measurements, x-ray dichroism has the advantage of determining separately the spin and orbital components of the magnetic moment. The relatively low time resolution of the synchrotron x-ray probe pulses (80 ps FWHM) is overcome by employing an ultrafast x-ray streak camera with a time resolution of < 1 ps. A description of the experimental setup including the x-ray/IR laser pulse synchronization and the streak camera is given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.