Fabrication of 3D chiral nanoplasmonic structures is always challenging, while the principles for their chiroptical properties are still ambiguous.
We will present a combined experimental and theoretical study on 3D chiroplasmonic activity of silver nanospirals (AgNSs), fabricated on sapphire by low temperature glancing angle deposition. AgNSs exhibit bisignated CD spectra in the UV-visible range, in the form of not only individual AgNSs or an array. Compared to individual AgNSs, the array of AgNSs show CD with an intensity 3 order of magnitude higher. It is demonstrated the engineering of chiroplasmonic CD via adjusting spiral parameters, including spiral pitches, number of turns and handedness.
Finite element simulations were performed and are in good agreement with the experiments. A LC theory is also employed to explain the difference of chiroplasmonic CD in the UV and visible region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.