In this letter, a two-stage phase control technique is proposed to increase the control bandwidth of the target-in-the-loop (TIL) system. In this technique, the first stage phase control is enabled by LiNbO3 phase modulator to compensate the phase noises in the fiber amplifiers, and the second stage phase control is enabled by the liquid crystal (LC) to compensate the phase noises induced by the atmospheric turbulence. We built a TIL coherent beam combining system with 3-channel coherent fiber lasers over a 40 m atmospheric propagation path. In our experiment, the stochastic parallel gradient descent (SPGD) algorithm was employed for phase control. When the phase control system was in the close loop, the performance of laser beam projection was significantly improved, and the phase locking bandwidth for transmitter side phase distortions reached 1 kHz. This method can be used for applications such as energy transmission and free-space optical communication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.