In this manuscript, a dielectric nanoparticle-assisted excitation of optical Tamm mode (OTM) is proposed using a 1DPhotonic Crystal configuration. The structure comprises a bilayer photonic crystal structure having silicon nanoparticles placed at the top interface of the structure. The structural parameters and nanoparticle sizes are optimized to break the translational symmetry. The reflectance spectrum and field distribution map are analytically studied by the finite element method. The analytical results exhibit the excitation and confinement of OTM. The excited OTM modes show a strong dependency on the angle of incidence and the nanoparticle size. The obtained results exhibit that dielectric nanoparticles can be utilized as compact surface mode exciters and scatterers. This further facilitates the development of OTM devices for integrated photonic applications.
To generate resonance in the ultraviolet (UV) wavelength region, we have developed a Bragg mirror structure with a SiO2 top layer. This paper shows the wavelength at which sensitivity occurs by modifying the architecture of the one-dimensional photonic crystal (1D-PhC) structure appropriately. The structural parameters are adjusted to excite a Bloch surface wave with a wavelength of 256 and 281 nm at the top interface, which are the operational wavelengths. The spectrum’s distribution of electric fields and mode confinement confirmed the suggested structure with an 8-nm thick defect layer. The proposed design is empathetic at UV wavelength with varying analyte’s refractive index value. The investigation shows that the sensitivity is about 107.42 and 101.85 deg/RIU, and the quality factor is 1426.17 and 1708.14 nm at UV wavelengths of 281 and 256 nm, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.