We demonstrate turbulence mitigation in a free-space optical link without adaptive optics. A module consisting of an 8-mode Multi-Plane Light Conversion (MPLC) device connected to a photonic integrated chip (PIC) collects a perturbed beam and converts it into a fundamental mode propagating in a standard single-mode fiber (SMF). Module is tested on a 200-meter optical link at 1550 nm under different D/r0 conditions. Results are compared to simulations and laboratory experiments using calibrated turbulent phase plates. We show increased coupling efficiency and lower fading compared to SMF coupling, demonstrating that MPLC and PIC are a viable turbulence mitigation option.
We demonstrate coherent on-chip combining for atmospheric turbulence mitigation using Multi-Plane Light Conversion (MPLC). A Niobate Lithium (LiNbO3) photonic integrated chip (PIC) was manufactured to optically combine via balancing and rephasing of 8 disturbed signals collected and demultiplexed by an MPLC. Cascaded on-chip Mach-Zehnders interferometers containing controllable phase shifters allow combining of optical inputs two at a time. Optical leaks are used as feedback loops. After 3 stages, all signals are coherently combined into a main output. We present efficiency, bandwidth, and compatibility with telecom operation of the PIC recombination.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.