DNA is an interesting material from the viewpoint of the materials science. This paper discusses the electronic
states of the metal incorporated M-DNA complexes with several species of metal ions. M-DNA prepared by the
ordinary methanol precipitation technique has been investigated with ESR, STM and optical absorption, and
concluded that the metal ion hydrated with several water molecules locates in between the bases of a base pair
and that the divalent metal ions are incorporated into DNA in place of two Na cations as the counter ion for PO-4in the DNA backbones. Only in Fe-DNA, it was confirmed that the Fe2+ in the FeCl2 aqueous solution reacts
with DNA to form Fe-DNA complex with Fe3+, where the charge would transfer to DNA. Within 30 min, the
hydrolysis of Fe2+ to form Fe3+O(OH) did not occur in the FeCl2 aqueous solution at room temperature. The
optical absorption spectra of Fe-DNA is similar to that for FeCl3 with the ionic character, but definitely differs
from that of Fe3+O(OH) with the covalent bonding nature, suggesting the ionic character of Fe3+ in Fe-DNA.
Finally, the possible two kinds of electronic states for Zn-DNA with different bonding nature will be discussed
in relation to the recent report on Zn-DNA.
DNA has attracted much interest as a material for nano science and technology. To unveil the intrinsic nature of
DNA both in natural form and modified forms of M-DNA with a variety of divalent metal ions. From the magnetic
and optical properties, it is concluded that the electronic states of natural salmon DNA is of semiconducting.
Thus, only the hopping transport via excited states or impurity site like oxygens is expected. One of the efforts
to introduce charge carriers into DNA, insertion of divalent metal ions, has been studied from magnetic, optical
and structural aspects. It was concluded that the divalent metal ions are inserted in between the bases of a base
pair, in place of hydrogen bonds, and the charge transfer from the metal ions to DNA occurs only in the case of
Fe-DNA.
DNA has attracted much interest as a material for nano science and technology. We have studied DNA both
in natural forms and modified forms M-DNA by insertion of a variety of metal ions. On the ground of basic
science, we tried to unveil the intrinsic physical properties, especially magnetic properties of natural DNA and a
possibility of charge carrier doping by the metal ion insertion. Diamagnetic nature of natural DNA and a variety
of features in M-DNA will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.