The Army's Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of missile Hardware-In-the-Loop (HWIL) simulation / test capabilities designed to support testing from concept through production. This paper presents the design tradeoffs that were conducted in the development of the AMSTAR sensor stimulators and the flight motion simulators. The AMSTAR facility design includes systems to stimulate each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) sensors. The flight motion simulator (FMS) performance was key to the success of the simulation but required many concessions to accommodate the design considerations for the tri-mode stimulation systems.
KEYWORDS: Extremely high frequency, Projection systems, Missiles, Computer simulations, Fermium, Frequency modulation, Iterated function systems, Data modeling, Infrared imaging, Sensors
The Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of state-of-the-art hardware-in-the-loop (HWIL) simulation / test capabilities designed to meet the life-cycle testing needs of multi-spectral systems. This paper presents the major AMSTAR facility design concepts and each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) in-band scene generation and projection system designs. The emergence of Multispectral sensors in missile systems necessitates capabilities such as AMSTAR to simultaneous project MMW, IR, and SAL wave bands into a common sensor aperture.
KEYWORDS: Extremely high frequency, Projection systems, Missiles, Fermium, Frequency modulation, Infrared imaging, Sensors, Computer simulations, Data modeling, Signal attenuation
The Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of state-of-the-art Hardware-In-the-Loop (HWIL) simulation / test capabilities designed to meet the life-cycle testing needs of multi-spectral systems. This paper presents the major AMSTAR facility design concepts and each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) in-band scene generation and projection system designs. The emergence of Multispectral sensors in missile systems necessitates capabilities such as AMSTAR to simultaneous project MMW, IR, and SAL wave bands into a common sensor aperture.
The Redstone Technical Test Center (RTTC) has the requirement to project dynamic, infrared (IR) imagery to sensors under test. This imagery must be of sufficient quality and resolution so that, sensors under test will perceive and respond just as they do to real-world scenes. In order to achieve this fidelity from a pixelized infrared resistor emitter array, non-uniformity correction (NUC) is necessary. An important step in performing NUC is to calibrate the IR projection system so as to be capable of projecting a radiometric uniform IR image. The quality of the projected image is significantly enhanced by proper application of this calibration. To properly implement non- uniformity correction, it is necessary to accurately measure the radiometric emission of each element, or display pixel (emitter pixel), in the emitter array. This paper presents mathematical models and image-processing techniques required to successfully calibrate a non-uniform emitter projection system to absolute temperature. RTTC has developed a high- speed, reliable, and flexible means of digitally processing IR images captured from an emitter array. This method of evaluating IR imagery is also useful in performing sensor and overall projection system characterization. The purpose of this paper is to present the methods for correcting the absolute temperature non-uniformity of an IR resistor array.
Many test facilities currently have the requirement to project dynamic, infrared (IR) imagery into sensors under test. This imagery must be of sufficient quality and resolution so that, sensors under test will perceive and respond just as they do to real-world scenes. In order to achieve this fidelity from an infrared micro-resistor based emitter array, Non-Uniformity Correction (NUC) is necessary. An important step in performing NUC is to calibrate the IR projection system so as to be capable of projecting a uniform temperature/IR image. The quality of the projected image is significantly enhanced by proper application of this calibration. To properly implement non-uniformity correction, it is necessary to accurately measure the IR emissions of each display element, or display pixel (dixel), in the emitter array. Performing these measurements involves collecting a large volume of data at a high rate. The U.S. Army's Test and Evaluation Command (TECOM) has developed a high-speed, relatively inexpensive and flexible means of digitally capturing IR emissions from an emitter array. This method of digitally capturing IR imagery is also useful in performing sensor and overall system characterization. TECOM has investigated, planned, and developed a non-uniformity data collection system, using primarily Commercial Off-The-Shelf (COTS) hardware and software, capable of digitally capturing the emissions of a long wave IR emitter array at 30 frames per second. The digital images are then processed to characterize individual dixels of the IR scene projection system. This paper presents a description of a test facility's need, along with a history of the design, development and actual implementation of a non- uniformity data collection system. In addition to the primary purpose of collecting digital imagery for NUC, other system uses for digital imagery collection are discussed.
The Infrared Simulation and Test Acceptance Facility (IR STAF) will be a state-of-the-art hardware-in-the-loop (HWIL) simulation/test facility for performing all-up-round missile testing in a non-destructive laboratory environment. Full-up IR guided missiles will be placed on a five-axis flight motion simulator (FMS) to allow closed-loop testing of the missile for the full range of tactical flight scenarios. This paper focuses on the unique requirements placed on the FMS, and the design trade-offs that led to performance parameters that could meet mission requirements. The inner three axes of the FMS carries the all-up-round missile under test and the outer two axes move a dynamic IR scene projector system. A real-time control computer simulates the aerodynamic and kinematics response of the missile and generates commands for the FMS and IR scene projector. This system puts the missile under test through multiple scenarios as opposed to a single live-firing. Non-destructive HWIL testing can reduce the number of live firings during lot acceptance tests (LATs) while verifying system performance with a high degree of confidence. The purpose of the facility is to substantially reduce the cost of missile lot acceptance testing while maintaining or improving the confidence in missile hardware.
Laboratory Test and Evaluation of imaging infrared (I2R) systems is being greatly enhanced through the use of the Electro-Optics Sensor Flight Evaluation Laboratory (EOSFEL) and the Electro-Optics Target Acquisition Sensor Evaluation Laboratory (EOTASEL) at the US Army Redstone Technical Test Center. In addition to other standard and future test support, these laboratories will be utilized to support tactical I2R missile system interoperability testing. The EOSFEL is a state-of-the-art, performance grade, Hardware-In-the-Loop test capability for in-band, closed- loop test and evaluation of optically guided missile seekers, guidance sections, and control sections. The EOTASEL is a class 100,000 clean room laboratory, with state-of-the-art test capability for evaluating the performance of electro-optical target acquisition and fire control subsystems in a hardware/human-in-the-loop environment. With I2R missile systems being developed to work with electro-optical target acquisition subsystems, such as the second generation Forward Looking Infrared sights, the need arises for testing the interoperability of these sensor subsystems within the cost effective confines of the laboratory. Interoperability testing today is currently performed at the system level in real-world field environments, which is very expensive and costly to identify problems at this level. This paper describes a realistic technique for performing high fidelity laboratory interoperability testing which utilizes the EOSFEL and EOTASEL including two Dynamic Infrared Scene Projector systems, a five-axis flight motion simulator, a two-axis platform motion simulator, climatic chambers, supporting instrumentation, and computer control.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.