Intrathecal (IT) administration is a drug delivery method with great potential for the treatment of a broad range of neurodegenerative disorders. Imaging is a useful tool for assessing the biodistribution of intrathecally administered molecules, especially for longer-lived radionuclides. However, longer-lived radionuclides are often associated with higher radiation absorbed dose, a quantitative measure computed from serial imaging data. We have developed a custom dosimetry model to support intrathecal administration. In this work, emphasis is placed on recent model refinements to improve absorbed dose estimates to the spinal cord and its implication for dosimetry calculation in translational imaging trials.
Current methods of needle insertion during percutaneous CT and MRI guided procedures lack precision in
needle depth sensing. The depth of the needle insertion is currently monitored through depth markers drawn on the
needle and later confirmed by intra-procedural imaging; until this confirmation, the physicians’ judgment that the target
is reached is solely based on the depth markers, which are not always clearly visible. We have therefore designed an
optical sensing device which provides continuous feedback of needle insertion depth and degree of rotation throughout
insertion.
An optical mouse sensor was used in conjunction with a microcontroller board, Arduino Due, to acquire needle
position information. The device is designed to be attached to a needle guidance robot developed for MRI-guided
prostate biopsy in order to aid the manual insertion. An LCD screen and three LEDs were employed with the Arduino
Due to form a hand-held device displaying needle depth and rotation. Accuracy of the device was tested to evaluate the
impact of insertion speed and rotation.
Unlike single dimensional needle depth sensing developed by other researchers, this two dimensional sensing
device can also detect the rotation around the needle axis. The combination of depth and rotation sensing would be
greatly beneficial for the needle steering approaches that require both depth and rotation information. Our preliminary
results indicate that this sensing device can be useful in detecting needle motion when using an appropriate speed and
range of motion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.