Proceedings Article | 8 June 2017
Alejandro Mattar, Dani Cavalcanti, Jan Kolodynski, Paul Skrzypczyk, Antonio Acin, Konrad Banaszek
KEYWORDS: Quantum optics, Current controlled current source, Quantum key distribution, Quantum cryptography, Quantum communications, Computer security, Optical fibers, Channel projecting optics, Quantum information
The concept of the Device-Independent Quantum Key Distribution (DI-QKD) constitutes the minimalist paradigm for quantum cryptography, in which the security of the distributed secret key is fully assured by the statistical properties of the data being shared between the parties that perform a quantum-based protocol. In particular, the secrecy of the distributed key is ultimately guaranteed not only thanks to the quantum nature of the underlying scheme, but also without making any assumptions about the operation of the devices being employed.
Such a conservative approach is possible thanks to the non-local correlations exhibited within the shared data, i.e., the correlations of genuine quantum origin that, due to violation of a particular Bell inequality, cannot be explained by any form of common randomness pre-available to the parties. Such violation, however, must be revealed without performing any post-selection on the data, what would then open the so-called detection loophole and jeopardize the security of the protocol.
In spite of the tremendous advances recently made to achieve higher detection efficiencies in Bell-violation experiments, DI-QKD remains a very experimentally difficult task due to the exponential increase of loss in the channel, e.g., implemented with optical fibres, with the distance separating the parties involved. Here, we describe a new and plausible solution to overcome the crucial problem of channel loss in the frame of DI-QKD optical implementations.
In particular, we propose a novel protocol inspired by the entanglement swapping schemes, which by the usage of the state-of-the-art (e.g., quantum-dot-based or heralded) single-photon sources has potential, for the first time, to be implementable with current photonic and linear optics technologies. While allowing for any transmission losses that only decrease the rate of the key distribution without creating vulnerability, it tolerates overall detection efficiency at the 90% level even when requiring strict device-independence.
We compare our scheme against protocols that involve sources based on spontaneous parametric down-conversion (SPDC), in order to explicitly show and explain why such SPDC-based proposals—even when enhanced by the entanglement swapping or qubit amplification techniques—are then largely outperformed when physical imperfections are rigorously taken into account.