We are currently developing a monochromatic x-ray source for small animal tomographic imaging. This source consists
of a conventional cone beam microfocus x-ray tube with a tungsten target coupled to a filter that uses Bragg diffraction
to transmit only x-rays within a narrow energy range (~3 keV FWHM). A tissue-equivalent mouse phantom was used to
a) evaluate how clearly CT imaging using the quasi-monoenergetic beam is able to differentiate tissue types compared to
conventional polyenergetic CT, and b) to test the ability of the source and Bragg filter combination to perform dual
energy, iodine contrast enhanced imaging. Single slice CT scans of the phantom were obtained both with polyenergetic
(1.8 mm Al filtration) and quasi-monoenergetic beams. Region of interest analysis showed that pixel value variance was
signifcantly reduced in the quasi-monochromatic case compared to the polyenergetic case, suggesting a reduction in the
variance of the linear attenuation coefficients of the tissue equivalent materials due to the narrower energy spectrum. To
test dual energy iodine K-edge imaging, vials containing solutions with a range of iodine contrasts were added to the
phantom. Single-slice CT scans were obtained using spectra with maximum values at 30 and 35 keV, respectively.
Analysis of the resulting difference images (35 keV image - 30 keV image) shows that the magnitude of the difference
signal produced by iodine exceeds that of bone for iodine concentrations above ~20 mg/ml, and that of muscle and fat
tissues for iodine concentrations above ~5 mg/ml.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.