The HJ satellite constellation is designed for environment and disaster monitoring by the Chinese government. This paper investigates the performance of multitemporal multispectral charge-coupled device (CCD) data on board HJ-1-A and HJ-1-B for crop classification in the North China Plain. Support vector machine classifier is selected for the classification using different combinations of multitemporal HJ multispectral data. The results indicate that multitemporal HJ CCD data could effectively identify wheat fields with an overall classification accuracy of 91.7%. Considering only single temporal data, 88.2% is the best classification accuracy achieved using the data acquired at the flowering time of wheat. The performance of the combination of two temporal data acquired at the jointing and flowering times of wheat is almost as well as using all three temporal data, indicating that two appropriate temporal data are enough for wheat classification, and much more data have little effect on improving the classification accuracy. Moreover, two temporal data acquired over a larger time interval achieves better results than that over a smaller interval. However, the field borders and smaller cotton fields cannot be identified effectively by HJ multispectral data, and misclassification phenomenon exists because of the relatively coarse spatial resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.