Super-resolution, structured illumination microscopy (SIM) is an ideal modality for imaging live cells due to its relatively high speed and low photon-induced damage to the cells. SIM consists of two generic components: (i) sample illumination by a sinusoidal pattern and (ii) computational reconstruction of a super-resolution image. The rate-limiting step in observing a super-resolution image in SIM is the reconstruction speed of the algorithm required to form a single image from as many as nine raw images. These reconstruction algorithms impose a significant computing burden due to a complex workflow and a large number of calculations requiring 10-300 seconds per image nullifying real-time imaging. In this mini-review, we show how the approaches we developed to improve Hessian-SIM algorithm reconstruction speed can be used to improve other SIM image reconstruction algorithms. These approaches, which included code improvement, conversion to the GPU environment, and use of cost-effective high-performance computers produce up to 500-fold increases in image reconstruction speed.
Super-resolution structured illumination microscopy (SR-SIM) is an outstanding method for visualizing the subcellular dynamics in living cells. To date, by using elaborately designed systems and algorithms, SR-SIM can achieve rapid, optically sectioned, SR observation with hundreds to thousands of time points. However, real-time observation is still out of reach for most SIM setups as conventional algorithms for image reconstruction involve a heavy computing burden. To address this limitation, an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM, termed joint space and frequency reconstruction. This algorithm results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM. Critically, the increased processing speed does not come at the expense of spatial resolution or sectioning capability, as demonstrated by live imaging of microtubule dynamics and mitochondrial tubulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.