We investigate the exceptional points in a two-layer cylindrical waveguide structure consisting of absorbing and nonabsorbing dielectrics. We show that by tuning the parameters of the structure the complex effective indices of two waveguide modes can coalesce so that an exceptional point is formed. We show that the sensitivity of the effective index of the waveguide mode is enhanced at the exceptional point. We also investigate using phase-change materials in multilayer structures to switch between singular points. We show that in multilayer structures consisting of phasechange, lossless dielectric, lossy, and gain materials, absorbing or spectral singularities can be switched to exceptional points, and self-dual spectral singularities can be switched to unidirectional spectral singularities by switching the phasechange material from its crystalline to its amorphous phase. Our results could be important for developing new compact reconfigurable singularity-enhanced optical devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.