Complex emulsion droplets consisting of hydrocarbon and fluorocarbon oils dispersed in water have been shown to exhibit iridescent structural color via interference from total internal reflection, and the color is tunable based on the size, shape, composition, and orientation of the droplets. Our study explores the structural color properties of complex emulsion droplets and their application to colorimetric chemical sensing through the use of an α- amylase responsive surfactant solution composed of γ-cyclodextrin, Triton X-100 surfactant, and Capstone FS-30 surfactant. We aim to demonstrate proof-of-concept sensitivity of biphasic oil-in-water emulsion droplets for colorimetric sensing through the correlation of reflected structural color patterns to droplet shape and size.
The precise control of light–matter interactions is crucial for the majority of known biological organisms in their struggle to survive. Many species have evolved unique methods to manipulate light in their environment using a variety of physical effects including pigment-induced, spectrally selective absorption or light interference in photonic structures that consist of micro- and nano-periodic material morphologies. In their optical performance, many of the known biological photonic systems are subject to selection criteria not unlike the requirements faced in the development of novel optical technology. For this reason, biological light manipulation strategies provide inspiration for the creation of tunable, stimuli-responsive, adaptive material platforms that will contribute to the development of multifunctional surfaces and innovative optical technology. Biomimetic and bio-inspired approaches for the manufacture of photonic systems rely on self-assembly and bottom-up growth techniques often combined with conventional top-down manufacturing. In this regard, we can benefit in several ways from highly sophisticated material solutions that have convergently evolved in various organisms. We explore design concepts found in biological photonic architectures, seek to understand the mechanisms underlying morphogenesis of bio-optical systems, aim to devise viable manufacturing strategies that can benefit from insight in biological formation processes and the use of established synthetic routines alike, and ultimately strive to realize new photonic materials with tailor-made optical properties.
This talk is focused on the identification of biological role model photonic architectures, a brief discussion of recently developed bio-inspired photonic structures, including mechano-sensitive color-tunable photonic fibers and reconfigurable fluid micro-lenses. Potentially, early-stage results in studying and harnessing the structure-forming capabilities of living cells that lie at the origin of many species’ ability to grow photonic materials will also be presented.
We report hybrid polymer actuator arrays based on environmentally responsive hydrogel and actuatable optical
microstructures that are designed to reversibly switch optical properties in response to the environment. Arrays of
micrometer scale plates were patterned by deep reactive ion etching of silicon which served as master structures for
replica molding in polydimethylsiloxane (PDMS). UV-curable epoxy was cast in a metal-sputtered PDMS mold to
transfer a thin metal film onto each microplate to form a micromirror array. Polyelectrolyte hydrogel, such as
poly(acrylamide-co-acrylic acid), was patterned on the micromirror array and acted as an artificial muscle, bending the
micromirrors in response to the change in humidity or pH. Such hybrid systems showed reversible switching between
high transmittance (low reflectivity) and low transmittance (high reflectivity) without the aid of external power. Our
design of hybrid actuated optics opens a broad avenue for developing environmentally responsive adaptive and active
optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.