The symmetry operation associated with propagation reciprocity is complex conjugation and adaptive optics is used to physically carry out this symmetry operation. We use a plane-to-plane framework to describe the fundamental limits placed on implementing propagation reciprocity that arise due to diffraction. Compensation system performance is often analyzed using the ray optics limit (e.g. defining the isoplanatic angle). This limits the applicability of such results by ignoring the diffractive limits on the ability to sense the laser guide star phase and amplitude information. We describe how the diffractive limits of phase-only and full-field compensation arise in terms of this flow of information. The plane-to-plane framework also shows the role of the beacon initial conditions as the end result of complete spatial reciprocity.
The limits to the ability of adaptive optics to achieve spatial propagation reciprocity are determined by diffraction. The beacon is a prominent component in defining the diffractive limit, so diffraction plays a role in the optimal choice of beacon parameters. We show with an explicit example that a point-source beacon is not the optimal choice, and that a point-source beacon cannot be used to measure the diffractive limit of phase-only compensation. At the single scattering level, diffraction dictates the use of an extended coherent beacon. We also show with an explicit example that optical vortices are not branch points, thus a well-defined phase reconstruction from an initially coherent beacon propagated through strong or extensive turbulence will not be hindered by the presence of optical vortices.
The SOPHI (Segmented Optics PHase Integration) Phase 1 project has demonstrated the original goals for the SOPHI breadboard to enable it to meet the challenge of the Phase II full 1 meter optical quality segmented mirror project: one of these goals is that the mirror segments can be phased without edge sensors and without referencing each other (no 2 π ambiguities). To do this, an optical metrology is utilized (the subject of a separate paper and reference 1). The stiffness and lightweight criteria are met by utilizing CSIC and Cesic ceramics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.