We are seeing a growing use of light emitting diodes (LEDs) in a range of applications including lighting, TV and backlight board screen, display etc. In comparison with the traditional incandescent and fluorescent light bulbs, LEDs offer long life-space, much higher energy efficiency, high performance cost ratio and above all very fast switching capability. LED based Visible Light Communications (VLC) is an emerging field of optical communications that focuses on the part of the electromagnetic spectrum that humans can see. Depending on the transmission distance, we can divide the whole optical network into two categories, long haul and short haul. Visible light communication can be a promising candidate for short haul applications. In this paper, we outline the configuration of VLC, its unique benefits, and describe the state of the art research contributions consisting of advanced modulation formats including adaptive bit loading OFDM, carrierless amplitude and phase (CAP), pulse amplitude modulation (PAM) and single carrier Nyquist, linear equalization and nonlinear distortion mitigation based on machine learning, quasi-balanced coding and phase-shifted Manchester coding. These enabling technologies can support VLC up to 10Gb/s class free space transmission.
As a promising candidate technology for the next generation communication systems, visible light communication (VLC), combined with high modulation and coding schemes, can be used to achieve throughput much higher than the traditional RF wireless ones. We propose adopting multiple light-emitting diodes (LEDs) on the transmit side to form a multiple-input signal-output (MISO) VLC system. Through the maximum ratio transmit beamforming, the signals from the multiple LEDs can be added coherently at the receiver side, and, therefore, the signal-to-noise ratio of the system can be improved slightly. Meanwhile, a method of channel estimation with superposed signal is employed for better channel estimation. Extensive lab experiments demonstrate that a two-LED MISO-VLC system can achieve a data rate of 1.0 Gbit/s over a free-space link of 1.2 m.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.