KEYWORDS: MODIS, Geographic information systems, Synthetic aperture radar, Satellites, Sensors, Data processing, Computing systems, Visualization, Space sensors, Global Positioning System
The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the
National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is
coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the
volcanic monitoring. The objective of the project is to develop a pre-operative system based on EO data and ground
measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department which
requirements and need are well integrated in the GMES Emergency Core Services program. The project philosophy is to
implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools
EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order
to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric
analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in
"near real time". The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio
and Campi Flegrei.
Remote sensing data acquired by satellite or airborne sensor need on ground validation measurements. As concern volcanoes monitoring, important information may be retrieved by observing these targets in the InfraRed spectral range.
A portable μFTIR (Fourier Transform Infrared Interferometer) capable of making sensitive and accurate measurements of radiance and emissivity of surface in the (600-5000 cm-1) spectral range with a spectral resolution of 2 cm-1 is available at the remote sensing laboratory of INGV (Rome). These kinds of measurements are very important firstly for the validation of remote sensed data and secondly for the improvement of many gas models used in volcanology for the diagnosis of volcano inner state. On 2003 μFTIR in situ spectral emissivity measurements were made during field surveys on selected test sites on Mount Etna. This area was observed also by a Fourier interferometer (MIROR) on board on a Dornier 228 and by ASTER a satellite borne sensor. The MIROR and ASTER data have been calibrated and compared with ground measurements. The agreement suggested to organize periodic measurements on selected test sites of Italian volcanic regions e.g. Solfatara and Stromboli volcano.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.