As thin film imaging becomes an accepted means of producing high-resolution microelectronics features, a host of new challenges has emerged. A dose dependence on resist thickness has been observed and systematically measured for chemically amplified resists exposed with 75 keV electron beam radiation. The required dose to print 100nm images increased as the thickness of the film decreased. A physiochemical explanation for this dependence was sought which included exploring thickness-induced variations in thermal characteristics of the resist film. Over the range of film thickness examined, 80-360nm, these parameters were deemed unlikely contributors to this phenomenon. Ultimately the data suggests that the dose variation with thickness may correlate to differences in the population of chemically effective electron with energies in the range of 10 to 100 eV that are responsible for the sensitization of electron beam resists.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.