Infrared thermography is a non-contact evaluation technique which allows not only the registration of the temperature distribution on a surface, but also the calculation of the amount of heat flowing through it. Boilers are important for industry and the quantification of the heat losses is beneficial to avoid fuel waste.
The present work suggests a methodology to calculate the thermic flow through boiler's isolation surfaces, using thermic images. With this, it is possible to find the flow by using a thermogram taking into consideration: the thermogram's range, knowing the camera's FOV, surface's emmisivity and characteristic length, object-to-camera distance, environmental temperature, and the assigned grey-level calibration curve to determined temperature range.
A software tool to upload and process the information was developed. This tool can calculate the surface's average convection coefficient hc by using empiric correlations developed for common geometries and heat transfer equations to calculate the thermic flow.
To test the technique functioning, the information given by the software tool was compared to the data given by the heat flow measurement thermal sensor. This comparison showed a 3% error range of relative error. The final validation was made on a waterwall-boiler's home isolated walls and the highest error obtained was close to 15%.
Regardless the calibration curve was found under laboratory conditions and the empiric correlations to calculate hc are for isometric surfaces, the methodology presented a good performance. This then is a first step to quantify the global heat losses on boiler's isolation surfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.