KEYWORDS: Digital breast tomosynthesis, Digital mammography, Signal to noise ratio, Breast, Sensors, Image analysis, Interference (communication), Cancer, Oncology, Image quality
To evaluate performance (image signal to noise ratio) of a digital mammographic system working in 2D planar versus tomosynthesis modality, a contrast detail phantom was developed embedding 1 cm plexyglas, including 49 holes of different diameter and depth, between two layers containing a breast simulating material. The acquisition protocol included 15 low dose projections (reconstructed 1mm-thick slices) and a 2D view.
Using an automatic software analysis tool, the signal difference to noise ratio (SDNR) was evaluated.
SDNR in the DBT images was about a factor two higher than with FFDM (P<1E-4). A more complete visual detection experiment is underway.
The aim of this study is to determine the performance of a direct CR reader, named "FCR Velocity U Focused Phosphor (FP)". The system is based on a CsBr columnar structured crystal, and the system's read out is based on the "linescan technology" that employs a wide-view CCD. The system's physical performance was tested by means of a quantitative analysis, with calculation of the modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). Image quality was assessed by performing a contrast-detail analysis. The results are compared with those obtained with the well known CR system Fuji FCR XG5000, and the new one Kodak DirectView CR 975. For all the measurements the standard radiation quality RQA-5 was used. The relationship between signal amplitude and entrance air kerma is logarithmic for all the systems and the response functions were used to linearize the images before the MTF (edge method) and NPS calculations. The contrast detail analysis has been achieved by using the well known CDRAD phantom and a customized software designed for automatic computation of the contrast-detail curves. The three systems present similar MTFs, whereas the Fuji Velocity U FP system, thanks to its greater efficiency, has a better behavior in terms of NNPS, especially at low frequencies. That allows the system based on columnar phosphor to provide a better DQE. CDRAD analysis basically confirms that the structured phosphor used in the Velocity system improves the visibility of some details. This is especially true for medium and large details.
Indirect-conversion FFDM systems usually present a lower spatial resolution, with respect to the direct-conversion one. This can put serious issues in mammography, since high resolution is required. Digital software has been developed for restoring the losses in spatial resolution caused by blurring in the scintillation phosphor. GE Senographe DS system gives users the possibility of using such restoration. Basically, a filtering can be performed on the acquired images, by activating the FineView software option. In this work we present a complete characterization of a clinical system, in terms of MTF, NPS, DQE, and contrast-detail analysis. Figures of merit have been calculated on images acquired with and without the FineView software. The effects of the restoration software are investigated, both on image quality parameters, and on contrast-detail visibility. The MTF of the FFDM system is improved when FineView is activated. On the other hand, NPS presents noticeably changes, especially at high frequencies. DQE is fairly independent from the exposure, when FineView filter is not activated, whereas it presents a clear spread over the exposures, when FineView is activated. CDMAM analysis does not show significant differences between images with or without the restoration filter. Besides, the Mo/Mo beam seems to provide slightly better results than the Rh/Rh one.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.