We describe a photonic bandgap polarization selector based on a photonic crystal placed at junction of two 90° intersecting waveguides to form an ultra-compact device. The photonic crystal consists of 7 layers of a triangular lattice with a radius to pitch ratio (r/a) of 0.24 and a lattice constant of 0.386μm. The PBG is orientated so that the light is incident and collected at 45° to the Γ-K crystallographic direction. Modeling of the PBG shows that TM polarized light is strongly reflected while TE light passes largely into the crystal. Measurements of the fibre-to-fibre transmitted power of the device for each polarization show that the TM collected power is ~6dB higher than the TE light for equal input polarization powers. Further evidence of the strong reflection of TM light comes from an equivalent sample without a 2-D lattice at the waveguide junction. In these samples, no TM light is detected at the output. Furthermore, by taking into account the TE and TM gains within the active waveguides, the TM to TE polarization selection of the PBG is estimated to be up to 22dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.