The Gemini North Adaptive Optics (GNAO) facility is the upcoming AO facility for Gemini North providing a state-of-the-art AO system for surveys and time domain science in the era of JWST and Rubin operations.
GNAO will be optimized to feed the Gemini infrared Multi Object Spectrograph (GIRMOS). While GIRMOS is the primary science driver for defining the capabilities of GNAO, any instrument operating with an f/32 beam can be deployed using GNAO.
The GNAO project includes the development of a new laser guide star facility which will consist of four sidelaunched laser beams supporting the two primary AO modes of GNAO: a wide-field mode providing an improved image quality over natural seeing for a 2-arcminute circular field-of-view and a narrow-field mode providing near diffraction-limited performance over a 20 × 20 arcsecond square field-of-view. The GNAO wide field mode will enable GIRMOS’s multi-IFU configuration in which the science beam to each individual IFU will be additionally corrected using multi-object AO within GIRMOS. The GNAO narrow field mode will feed the GIRMOS tiled IFU configuration in which all IFUs are combined into a “super”-IFU in the center of the field.
GNAO also includes the development of a new Real Time Controller, a new GNAO Facility System Controller and finally the development of a new AO Bench. We present in this paper an overview of the GNAO facility and provide a status update of each product.The Pyramid now forms part of the baseline for several next generation Extremely Large Telescopes (ELTs). As such its behaviour under realistic operating conditions must be further understood in order to optimise performance. At LAM a detailed investigation into the performance of the Pyramid aims to fully characterise the behaviour of this wave-front sensor in terms of linearity, sensitivity and operation. We have implemented a Pyramid sensor using a high speed OCAM2 camera (with close to 0 readout noise and a frame rate of 1.5kHz) in order to study the performance of the Pyramid within a full closed loop adaptive optics system. This investigation involves tests on all fronts, from theoretical models and numerical simulations to experimental tests under controlled laboratory conditions, with an aim to fully understand the Pyramid sensor in both modulated and non-modulated configurations. We include results demonstrating the linearity of the Pyramid signals, compare measured interaction matrices with those derived in simulation and evaluate the performance in closed loop operation. The final goal is to provide an on sky comparison between the Pyramid and a Shack-Hartmann wave-front sensor, at Observatoire de la Côte d'Azur (ONERA-ODISSEE bench). Here we present the adaptive optics setup at LAM and latest experimental and modelling results. The loop is closed on different static wave-front errors: the initial shape of the deformable mirror (DM) and a turbulent-like shape projected onto the DM. The results demonstrate a Pyramid closed loop performance of 7–8nm rms wave-front error compared to a reference at surface.
View contact details