A systematic study of the geometry dependent nucleation of superconductivity in nanoscaled superconductors is presented in this paper. The experimental Τc(Η) phase boundary is compared to theoretical calculations obtained in the framework of the linearized Ginzburg-Landau theory for different geometries (square, triangle, disk). The influence of the transformation of a square into a rectangle on the Τc(Η) phase boundary is analyzed. In elongated rectangles, a crossover from a linear to a parabolic field dependence of Τc has been observed. The evolution of the superconducting state is studied in a perforated disk by varying the size of the hole. A transition from a one-dimensional to a two-dimensional regime is seen when increasing the magnetic field for disks with small holes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.