Micro-cracks can be induced in thin monocrystalline silicon wafers during the manufacture of solar panels. High frequency guided waves allow for the monitoring of wafers and characterization of defects. Selective excitation of the first anti-symmetric A0 guided wave mode was achieved experimentally using a custom-made wedge transducer. The Lamb wave scattered field in the vicinity of artificial defects was measured using a noncontact laser interferometer. The surface extent of the shallow defects varying in size from 30 μm to 100 μm was characterized using an optical microscope. The characteristics of the scattered wave field were correlated to the defect size and the detection sensitivity was discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.