Wound healing is a physiologic process that acts to repair disruptions in the continuity of tissue caused by injury or surgical incision. Keloids and hypertrophic scars are forms of aberrant wound healing, which are characterized by the overproduction of collagen, resulting in an excessive amount of scar tissue. Keloid tumors, by definition, grow outside the boundary of the original tissue damage. Multiphoton microscopy (MPM) is an imaging technique which allows imaging of living specimens, without the use of fixation or stains. Images of collagen fibers are produced by the second harmonic signal intensity generated by endogenous fluorescence through excitation by infrared laser light. A postauricular keloid tumor was excised from a patient. The tissue was dissected, and a portion was imaged using MPM. Normal skin tissue was isolated from a patient undergoing a facelift. A portion of this tissue was also dissected and imaged using MPM. MPM images were taken using a 63X water immersion objective lens on a two-photon microscope and a titanium-sapphire laser. Images were taken beginning at the surface of the tissue and moving in at intervals of 200 nm to a final depth of 30 μm. The two-photon images were used to reconstruct three-dimensional representations of the collagen matrix within the tissues, which are readily contrasted. Density of the collagen within each tissue was also ascertained using depth dependant decay of the image intensity. Multiphoton imaging was successfully used to image the collagen matrix of normal skin and a keloid scar, demonstrating differences in their microstructures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.