This work deals with recent advances in the microfabrication process technology for medium to high-aspect ratio
structures fabricated by UV photolithography using different kinds of photoresists. The resulting structures were used as
molds and will be transformed into metal structures by electroplating. Two types of photoresists are compared: epoxy-based
(negative) SU-8 and acrylate-based (negative) Intervia BPN. This work was prompted by the need to find an
alternative to SU-8 photoresist which is difficult to process and remove after electroplating. The results presented in this
paper open up new possibilities for low-cost processes using electroplating in MEMS applications.
This paper deals with the development of a micro-interconnection technology suitable for the elaboration of RF-NEMS
(Nano-ElectroMechanical Systems) varactors. It aims to present an extension of RF MEMS concept into nano-scale domain
by using multi-walled carbon nanotubes (MWCNT) as movable part instead of micrometric membranes into reconfigurable
passive circuits for microwave applications.
For such a study, horizontal configuration of the NEMS varactors has been chosen and is commented. The technology is
established to fulfill several constraints, technological and microwave ones.
As far as technological requirements are concerned, specific attentions and tests have been carried out to satisfy:
• Possible and later industrialization. No e-beam technique has been selected for RF NEMS varactor elaboration.
Lateral MWCNT growth performed on a Ni catalyst layer, sandwiched between two SiO2 layers, showed
feasibility of suspended MWCNT beam.
• High thermal budget, induced by the MWCNT growth by CVD (Chemical Vapor Deposition), at least to 600°C.
All the dielectric and metallic layers, required to interlink the nano world with the micrometric measurements one,
have been studied accordingly. Consequently, the order of the technological steps has been identified.
About microwave and actuation specifications (targeted close to 25V), the minimization of losses and actuation voltage
implies large layer's thicknesses compared to the CNT diameter.
Several specific technological issues are presented in this paper, taking care of both technological and microwave
compatibility to go toward RF NEMS varactor's elaboration.
For applications such as computers, cellular telephones and Microsystems, it is essential to reduce the size and the
weight of DC-DC converters. To miniaturize passive components, micromachining techniques provide solutions based
on low-temperature process compatible with active part of the converter. This paper deals with the integration on silicon
of "spiral-type" inductor topology. Electroplating techniques are used to achieve the copper conductor and the CoNiFe
laminated magnetic core and several investigations on the electroplating bath's parameters have been realized in order to
obtain the adequate magnetic properties. Finally, a 1μH micro-inductor prototype has been characterized.
The market of portable instruments is growing more and more. For applications such as computers, cellular phones and microsystems, it is essential to reduce size and weight of electronic devices, including power unit supplies associated with these products. This evolution will require high efficiency on-chip DC-DC converters providing low voltage for the various Ics. Therefore, fabrication of magnetic components dedicated to power conversion becomes necessary. To miniaturize inductors, the micromachining techniques provide solutions based on low-temperature process compatible with active part of the converter. In this paper, a "spiral type" inductor topology designed for power electronics application is investigated. Thick resist molds photolithography and electroplating techniques are used to achieve the copper conductor and the NiFe laminated magnetic core.
Compactness, complexity of the interconnections and specific packaging, which are characteristics of Microsystems (MEMS), rule out the use of statistical procedure to assess reliability in space applications. Predictable reliability is the method recommended in this paper that uses a similar approach as CALCE already did for hybrid and microelectronic circuits. This method based on a failure mechanism approach is recalled at first and an example to illustrate this procedure based on the evolution of material crystal properties under radiation is presented.
The objective of the MICROMED CNRS project is the design of a complete microsystem usable in the treatment in vivo of hypertensives. The microsystem which corresponds with this objective includes different elements such as pressure sensors, a drug reservoir, a monitoring chip and a drug delivery system that necessitates the use of a dosing micropump able to deliver daily does of few microliters in several shots. We will focus here on the micropump:microfabrication technology, assembly and test. The fact that the fluid actuating membrane, the input and output fluid gates, and the two passive microvalues are together on a single silicon chip of 1 cm3 area makes this pump original. The fabrication technology combines the techniques of microelectronics and MEMS: micromachining for the square membrane and the fluid gates, sacrificial oxide layers and LPCVD polysilicon deposition for the microvalves. The assembly of the different parts is based on existing techniques like anodic bonding, gluing with adhesive films...we have investigated the fabrication of the micro pump with an electrostatic actuation. Tests are in progress for the first prototypes on a specific experimentation set- up in order to: (i) study the flowing of different fluids into the pump, (ii) study the directionality of the valves by plotting the flow rate/pressure (Phi) (P) diagram, (iii) study the pump functionality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.