Owing to their shape morphing capabilities and biomimetic nature, tensegrity structures offer a lightweight, adaptable, alternative to classical truss structures. Tensegrities comprise a collection of axially loaded compressive members (bars or struts) stabilized by a network of tension members (strings or cables), resulting in flexible structures which can be pre-stressed and actively controlled to change their shape. In this research, we study the morphing capabilities of the cylindrical triplex tensegrity by actively changing the length of the structure’s internal cable network. A geometric approach is used to characterize the full range of statically equilibrated shapes of a cylindrical triplex tensegrity structure. Then, trajectories are designed from a subset of equilibrated shapes and implemented in open-loop on an experimental triplex structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.