Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder (CPF) mission’s Hyperspectral Imager for Climate Science (HySICS) instrument’s transmissive flight diffuser calibration is presented. The absolute Bidirectional Transmittance Distribution Function (BTDF) measurement of the transmissive diffuser is needed to calculate the instrument’s absolute efficiency. Along with a known solar irradiance source such as Total Solar Irradiance Sensor (TSIS), it can provide an absolute irradiance measurement path on orbit, with NIST traceability. This provides an additional path for CPF to cross compare with other on orbit sensors’ measurement such as Visible-Infrared Imaging Radiometer Suite (VIIRS), Clouds and the Earth’s Radiant Energy System (CERES). The flight diffuser was calibrated at NASA’s Goddard Space Flight Center (GSFC) using the Facility’s Optical Scatterometer.
Within the NASA GSFC Code 618 Calibration Laboratory, the Radiometric Calibration Lab (RCL) is focused on maintaining National Institute of Standards and Technology (NIST) traceable calibrated sources and detectors to calibrate, characterize, and monitor remote sensing instrumentation throughout NASA and the larger scientific community.
Among these RCL sources, the Grande broadband source, a 9-lamp 1m diameter integrating sphere with a 25.4cm aperture and PTFE coating housed in a Class 10,000 cleanroom environment, is the workhorse for providing regular NIST traceable calibration services to ground, flight, and remote sensing missions on a consistent basis.
As part of an initiative to improve the Grande calibration uncertainty budget, monitoring spectrometers were recently installed on Grande to provide continuous spectral radiance measurements of the integrating sphere source whenever Grande is in use. This monitoring data is used to characterize Grande’s ramp up stabilization and nominal operation process. Over multiple calibration sessions with Grande, we can observe long term source behavioral changes as the lamps age.
Having continuous monitoring allows us to validate Grande’s stability during remote sensing calibration sessions. As stability data is accumulated and analyzed it results in updated and improved uncertainty budget for calibrations using Grande.
The NASA GSFC Code 618 Calibration Laboratory maintains instruments and National Institute of Standards and Technology (NIST) traceable calibrated sources and detectors to calibrate, characterize, and monitor remote sensing instrumentation throughout NASA and the larger scientific community. Under the Calibration Laboratory umbrella, we operate the Radiometric Calibration Lab (RCL) focused on calibrating instrument radiometers, the Diffuser Calibration Lab (DCL) specializing in NIST traceable calibration of reflective and transmissive space diffusers. The RCL uses broadband sources as well as an array of options for monochromatic spectral calibration to provide regular NIST traceable calibration services to ground, flight, and remote sensing missions at NASA GSFC. The DCL uses scatterometers to measure the Bidirectional Reflectance and Transmittance Distribution Functions (BRDF & BTDF) of flight diffusers and witness samples. As we look to the future, the Calibration Laboratory will be automating routine processes throughout the facility and updating our online data collection and distribution capabilities. We are adding monitoring radiometers to our Grande calibration sphere to improve NIST traceability. Hardware updates to our scatterometers will keep us aligned with the diffuser calibration capabilities being developed at NIST.
The NASA GSFC Filter Radiometer Monitoring System (FRMS) was used to compare lamp-based and detector-based spectral radiance calibration of an integrating sphere. The FRMS is a telecentric, filter radiometer employing two apertures, a filter wheel, and a detector. The FRMS uses nine filters at specific wavelengths from 360 to 2400 nm. The lamp-based calibration used a National Institute of Standards and Technology (NIST) calibrated irradiance standard lamp to calibrate the irradiance responsivity of a scanning spectroradiometer. The spectroradiometer was then used to transfer its irradiance calibration to an integrating sphere. The lamp-based spectral radiance calibration of the sphere was calculated using the sphere irradiance, the sizes of the sphere exit and spectroradiometer entrance apertures, and the distance between those apertures. The detector-based calibration of the sphere used NIST calibrated absolute radiance Si photodiode detector to determine the absolute spectral radiance responsivity of the FRMS with the NASA GSFC Automated Laser Tuned Advanced Radiometry (ALTAR) laser system as the source. The absolute spectral radiance responsivity of the FRMS was measured at the following channels: 380, 410, 640, and 840, nm. The FRMS measured the integrating sphere to make a direct determination of its absolute radiance at those channels. Analysis of lamp-based and detector-based radiance measurements of the integrating sphere at four wavelength bands will be presented.
The Bidirectional Reflectance Distribution Function (BRDF) and Total Hemispherical Reflectance (THR) of two candidate black diffuse materials for the dim calibration targets of the NASA GSFC PACE Ocean Color Instrument (OCI) were reported in the SPIE conference last year. In this paper, we present new BRDF and THR results of the two black diffuse materials following additional UV exposure and solar wind tests. The BRDF measurements for five samples of each two black diffuse material were made at incident angles of 0° and 45° and at the wavelengths of 360 nm, 600 nm, and 1600 using the Table-top Goniometer (TTG) located in the Diffuser Calibration Laboratory (DCL) at NASA GSFC. The THR of the samples, 15 mm in diameter, was measured using a commercial UV-VIS-NIR spectrophotometer from 200 nm to 2500 nm. The spectral THR results of the two black diffuse materials exposed to UV and solar wind show an approximate 10 % higher reflectivity than the unexposed samples. The spectral profiles of the THR of the exposed and unexposed samples are relatively similar. The BRDF results at the incident angle of 45° show different trends in the forward and backward scattering regions, while those at normal incident angle are consistent with the THR results. We will also present the details of the samples’ surface features and the comparison of the 0°/45° BRDF and THR results, demonstrate the significance of background subtraction in the THR measurements for small, low reflectance samples, and discuss validation of BRDF scale, measurement repeatability, and major contributions of uncertainty.
We report the Bidirectional Reflection Distribution Function (BRDF) and Total Hemispheric Reflectance (THR) results of several low reflectance materials using a Table-top Goniometer (TTG) and a commercial UV-VIS-NIR spectrophotometer in support of the NASA GSFC PACE project. The newly developed TTG was utilized to perform the BRDF measurements for several black candidate samples in in-plane and out-of-plane configurations from 300 nm to 2000 nm. These measurements demonstrated the BRDF capability of the TTG to calibrate the dim calibration target with a reflectance of approximately 2 % for the OCI of the PACE project. The spectral THR of the black samples from 200 nm to 2500 nm was determined using a 10 % reflectance diffuse black standard and a monochromator-based light source equipped with a 150 mm diameter integrating sphere. The THR measurement is used to compliment and validate the BRDF measurements acquired from these samples. In this presentation, we also show examples of UV induced BRDF and THR changes on two black coatings. We will discuss validation of the BRDF scale, source stability, measurement repeatability, instrument signature, and uncertainty components.
In support of the prelaunch calibration of the Joint Polar Satellite System-1 (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS), the Bidirectional Reflectance Factor (BRF) and Bidirectional Reflectance Distribution Function (BRDF) of a VIIRS solar diffuser (SD) witness sample were determined using the table-top goniometer (TTG) located in the NASA GSFC Diffuser Calibration Laboratory (DCL). The BRF of the sample was measured for VIIRS bands in the reflected solar wavelength region from 410 nm to 2250 nm. The new TTG was developed to extend the laboratory’s BRF and BRDF measurement capability to wavelengths from 1600 to 2250 nm and specifically for the VIIRS M11 band centered at 2250 nm. We show the new features and capabilities of the new scatterometer and present the BRF and BRDF results for the incident/scatter test configuration of 0°/45° and for a set of angles representing of the VIIRS on-orbit solar diffuser calibration. The BRF and BRDF results of the SD witness were used to assist in finalizing the set of BRF values of J1 VIIRS SD to be used on-orbit. Comparison of the BRF results between the JPSS-1 VIIRS SD witness sample and the flight SD panel was made by varying different sample clocking orientations and by analyzing the ratio of BRF to total hemispherical reflectance in effort to minimize the uncertainty of the extrapolated flight BRF value at 2250 nm. Furthermore, differences between the prelaunch BRF results and those used in the VIIRS on-orbit BRF lookup table were examined to improve the VIIRS BRF calibration for future missions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.