Significance: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2 μm is not trivial.
Aim: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-μm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments.
Approach: In our study, various optical fibers with low attenuation (λ = 2.94 μm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study.
Results: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82 ± 0.99 mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage.
Conclusions: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.
The main purpose of this study is to evaluate the performance of different optical fibers after coupling an Er:YAG laser through them. This allows us to evaluate the feasibility of using them in future for minimally invasive ablation of bone, where a fiber has to be guided inside an endoscopic device. We coupled a high-power Er:YAG laser (λ = 2.94 μm) in different fibers separately. We analyzed the features and benefits of each fiber during the coupling process. The laser was operated at repetition rates of 1, 5, and 10 Hz in the energy range of 10-830 mJ. We used hollow-core, fluoride, sapphire and germanium oxide fibers with core sizes of 500, 450, 425 and 450 μm, respectively. The coupling efficiencies were determined by comparing the measured input and output energies for all the fibers. The resistance of each fiber to the input energy was evaluated by monitoring the stability of the measured output energy over time. From our observations, the coupling efficiencies for all the fibers were in the range 70 to 81 %. Due to the high coupling efficiency, all fibers have the potential to be used in endoscopic applications. However, their use will mostly depend on the individual need of a specific application.
The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.
The aim of the present study is to investigate the effect of laser pulse duration on ablation efficiency of hard bones. The bones were ablated using a microsecond pulsed Er-YAG laser. The laser wavelength was 2.94 μm and the repetition rate was 10Hz. Three samples of porcine femur were used and several areas were ablated with a fixed pulse energy of 280mJ and different pulse durations. The ablation procedure was applied during five seconds for all the experiments, therefore, the same amount of energy (14 J) was deposited in each trial. The ablation efficiency was determined by measuring the ablated volume per second for each experiment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.