We demonstrate an automated, cost-effective system that delivers early antimicrobial-susceptibility-testing results, minimizing incubation time and eliminating human errors, while remaining compatible with standard clinical workflow. A neural network processes the time-lapse intensity information from a fiber-optic array to detect growth in each well of a 96-wellplate. Our blind testing on clinical Staphylococcus aureus infections reveals that 95.03% of all the wells containing growth were correctly identified, with an average incubation time of 5.72-h. This deep learning-based optical system met the FDA-defined essential and categorical agreement criteria for all 14 antibiotics tested, after an average of <7-h of incubation time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.