The first generation of ELT instruments includes an optical-infrared High Resolution Spectrograph, ANDES (ArmazoNes high Dispersion Echelle Spectrograph). The optical design and architecture of ANDES is primarily dictated by its high spectral resolving power (R=100'000), the area of the spectrograph slit projected onto the sky (> 1 arcsec2), its broad wavelength coverage and the large primary mirror of the ELT, and must foresee several huge fiber-fed spectrograph units. One of them is the RIZ spectrograph, covering wavelengths from 620 to 960 nm. It deals with a recomposed ~40-mm-long entrance slit and a pupil anamorphic magnification to overcome the limitation size of a mosaic 1.6-meter R4 Echelle grating. It requires two fast cameras with F/# close to the unity. This paper describes the preliminary optical design of the RIZ spectrograph instrument, its challenges, and its nominal and expected performances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.