Optical coherence tomography (OCT) is a high-resolution noninvasive technology used in medical imaging for the spatial visualization of biological tissue. Due to its coherent nature, OCT suffers from speckle noise, which significantly degrades the information content of resulting scans. We introduce a new filtering method for three-dimensional OCT images, inspired by film grain removal techniques. By matching structural relatedness along all dimensions, the algorithm builds up vector paths for every voxel in the image volume representing its structural neighborhood. Then, by considering the information redundancy along these paths, our filter is able to reduce speckle noise significantly while simultaneously preserving structural information. This filter exceeds some common three-dimensional denoising algorithms used for OCT images, both in visual rendering quality and in measurable noise reduction. The noise-reduced results allow for improvement in subsequent processing steps, such as image segmentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.