Medical imaging devices, such as X-ray machines, inherently produce images that suffer from visual noise. Our objectives were to (i.) determine the effect of image denoising on a medical image classification task, and (ii.) determine if there exists a correlation between image denoising performance and medical image classification performance. We performed the medical image classification task on chest X-rays using the DenseNet-121 convolutional neural network (CNN) and used the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics as the image denoising performance measures. We first found that different denoising methods can make a statistically significant difference in classification performance for select labels. We also found that denoising methods affect fine-tuned models more than randomly-initialized models and that fine-tuned models have significantly higher and more uniform performance than randomly-initialized models. Lastly, we found that there is no significant correlation between PSNR and SSIM values and classification performance for our task.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.