This paper presents the design and development of a safe MEMS based micro electro-thermal igniter for a safe microfuze for military purpose. The proposed device’s architecture is made of: (1) one pyrotechnical micro igniter, (2) one arming function, (3) one disarming function and (3) one sterilization function. The pyrotechnical electro-thermal igniter consists in a resistive element that converts electrical energy into heat to initiate an energetic material. The arming function permits the igniter to be armed, ready to fire, only if the ignition conditions are respected. For that, a short-circuit to the electrical ground is cut and the igniter is connected to the power supply. The igniter can be reset to the safe mode (disarmed state) thanks to the disarming function that reconnects the igniter's electrical pads to the electrical ground. If necessary the igniter can be sterilized meaning that the system's ignition capability is definitively removed. All these functions are based on the use of two electro-thermal micro switches : one ON-OFF and one OFF-ON. Due to the application requirements (the fuze is used once but after a long storage, all components must have a high level of safety and reliability and the power consumption must be minimized), we opted for a new generation of one shot, safe and reliable micro switches. They are based on electro thermal mechanisms and consist in breaking one electrical connection (ON-OFF switch) or micro soldering locally two electrical connections (OFF-ON switch). Both switches have been developed in MEMS technology, characterized and are presented in this paper. A prototype of safe micro igniter with ON-OFF and OFF-ON switches has been also realized and is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.