The Fourier Transform Spectrograph (FTS) stands as a powerful tool for astronomers in characterizing the composition of celestial bodies through their emitted light. In this study, we introduce the development and initial performance evaluation of a fiber-fed FTS, specifically tailored for solar observations within the 600-1000 nm wavelength range. To improve measurement precision, we integrated a stabilized He-Ne laser as a metrology wavelength source. This setup generates a monochromatic interferogram in parallel with the scientific interferogram, allowing for adaptive correction of the instrument's non-linear scan characteristics that affect the phase information of the scientific interferogram. For wavelength calibration, we employed well-defined oxygen (O2) lines as a reference. The comparison of the solar spectrum measured with our system against a simulated model showed good agreement affirming the system's efficacy. Additionally, we discuss the wavelength calibration using O2 lines in the telluric region, offering insights into the system's repeatability. The analysis of the Fe-I absorption line within these lines further enabled us to determine the Sun's rotational velocity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.