A tunable multi-channel optical parametric amplifier (OPA) using difference-frequency generation (DFG) in a periodically poled lithium niobate (PPLN) waveguide is proposed and simulated. The number of the channels can be selected. The working wavelength and gain of each channel can be tuned independently.
We propose a novel three-dimensional (3-D) continuously tunable delay line based on high performance 3-D tunable directional couplers (DCs) driven by graphene heaters. The device includes a continuously tunable delay line section and 2 bit discretely tunable delay line section, the former can be considered as 1 bit discretely tunable delay line structure, the latter includes two delay units and three switch units. We set the maximum delay tuning range of the continuously tunable delay line section equal to incremental delay step ∆t of discretely tunable delay line section, so that the tuning is continuous over the entire delay range. The use of the graphene electrode by placing in direct contact with the upper waveguide core combined with the air slots formed on both sides of the graphene electrode can improve the heating efficiency. The proposed delay line has an optimal dimension of 25 mm × 6.8 mm (length × width). The simulation results show crosstalks are less than -21.6 dB over the whole C-band and less than ~-45.2 dB (OFF state) at 1550 nm. The delay line is capable of operation for continuously tuning and the delay time is linearly dependent on K. And the continuously tuning delay range is from 0 to 200 ps over minimum 3 dB bandwidth of <10 GHz. The minimum 3 dB bandwidth of our proposed device is four times larger than that of a continuously tunable delay line constructed with a typical 2×2 asymmetric MZI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.