At high temperatures, SMPs share attributes like rubber and exhibit long-range reversibility. In contrast, at low temperatures they become very rigid and are susceptible to plastic, only small strains are allowable. But there relatively little literature has considered the unique small stain (rubber phase) and large stain (glass phase) coupling in SMPs when developing the constitutive modeling. In this work, we present a 3D constitutive model for shape memory polymers in both low temperature small strain regime and high temperature large strain regime. The theory is based on the work of Liu et al. [15]. Four steps of SMP’s thermomechanical loadings cycle are considered in the constitutive model completely. The linear elastic and hyperelastic effects of SMP in different temperatures are also fully accounted for in the proposed model by adopt the neo-Hookean model and the Generalized Hooke’s laws.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.