Key optical elements for space qualification plans of photonic devices are overviewed. Device parameters and qualifying procedures were discussed to assure the reliability of newly developed photonic devices needed for potential usage in space environments. The goal is to gradually establish enough data to develop a space qualification guideline for devices using empirical and numerical models to assess reliability including the lifetime degradation of devices for long-term space applications. Optical, electrical and mechanical device requirements of newly integrated photonic devices (diode lasers and detector arrays) were presented. Monolithically integrated active pixel InGaAs detector arrays were compared, as examples, with those hybridized with CMOS silicon multiplexers in terms of their performances and reliability. Adapting the existing fiber optical (1.55 μm) communication technology, this integration will be an ideal optoelectronic system for dual band (0.5-2.5 μm, Visible/IR) applications near room temperature for use in geological material research and in atmospheric gas sensing in space. For target identification on earth, however, there are concerns about the effectiveness of the device quality, reliability, and prevention of device failure in preparation for multifunctional, transportable shipboard surveillance, night vision, and emission spectroscopy in air and on Mars terrestrial applications.
Switching and amplifying characteristics of a newly developed 2D InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors for low leakage, low power and fast control of circuit signal amplifying, buffering, selection and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with a silicon multiplexer, and in addition, allows the sensor to be front illuminated, making it sensitive to visible as well as near IR signal radiation. Adapting the existing 1.55 micrometers fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band applications near room temperature, for use in atmospheric gas sensing in space and target identification on earth. In this paper, 4 by 4 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit in preparation for 2D InGaAs active pixel sensor arrays for applications in multifunctional, transportable shipboard surveillance, night vision and emission spectroscopy.
Modulation Transfer Function (MTF) is an important figure of merit in focal plane array sensors, especially for accurate target positions such as star trackers. In-situ evaluation by MTF in different stages of imager system developments is necessary for an ideal design of different sensors and their signal processing. Understanding the tradeoff between different figures of merit will enable designers to achieve the most efficient design in specific missions. Advanced active pixel test sensors have been designed and fabricated where different pixel shapes were placed. Research on analyzing the MTF for the proper pixel shape is currently in progress for a centroidal configuration of a star. Explicit formulas for the modulation transfer function have been studied for the rectangular shaped pixel array. MTF will give us a more complete understanding of the tradeoffs opposed by the different pixel designs and by the signal processing conditions. In this paper, preliminary results of two different active pixel sensor (APS) focal plane arrays are presented in terms of crosstalk using a laser. MTF measurements of the APS arrays are achieved by applying only a single image. A rising or falling edge rather than the conventional bar target of slit scanning is needed to perform the measurement in each direction for the evaluation of the design efficiency.
Switching and amplifying characteristics of a newly developed monolithic InGaAs active pixel imager array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion- mode junction field effect transistors for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near IR signa radiation. Adapting the existing 1.55 micrometers fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 X 1 test array will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness in preparation for the second phase demonstration of integrated, 2D monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.
A newly fabricated monolithic InGaAs active pixel image sensor is presented, and its readout characteristics are described. The sensor is fabricated from InGaAs epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for signal buffering, selection and reset. The monolithic sensor eliminates the need for hybridization with a silicon multiplexer, and in addition, allows the sensor to be front illuminated, making it sensitive to visible as well as IR radiation. With further development, the sensor is ideal for dual band (visible/IR) applications, including optical communication. It is also well suited to applications requiring near room temperature, broad band response such as for atmospheric gas sensing and target identification. Two different types of small 4 by 1 test arrays have been fabricated. One is a source follower per detector architecture. Here the signal charge is integrated on the photodiode capacitance. The photodiode is connected to a gate of a JFET configured as a source-follower, which buffers the photodiode voltage. The other test circuit uses a capacitive transimpedance amplifier. This circuit contains an invertor using an input JFET with a passive JFET load. The photodiode is connected to the JFET gate. A feedback capacitor causes the circuit to act as an integrator, while keeping the diode input bias relatively constant. Both circuits also contain JFET switches for reset and selection. Selection connects the output of the chosen cell onto a common output bus. In this exploratory development effort, the effectiveness of these two different readout circuits will be discussed in terms of leakage, operating frequency, and temperature. These results then will guide for the second phase demonstration of integrated two dimensional monolithic active pixel sensor arrays for application in transportable shipboard surveillance, night vision and emission spectroscopy.
A new monolithic InGaAs active pixel multispectral image sensor is described. This infrared sensor will utilize high quality InGaAs grown by molecular beam epitaxy on InP substrate for the fabrication of a high speed junction field effect transistor array. In1-xGaxAs is a III-V alloy whose cutoff wavelength can be tuned from 0.8 micrometer (GaAs) to 3.5 micrometer (InAs). Due to the spectral windows of 3 - 5 micrometer and 8 - 12 micrometer in atmosphere, this material has not received much attention to date for infrared focal plane arrays even though the responsivities for the 0.8 - 1.0 micrometer, and 2.0 - 2.5 micrometer windows for the water and carbon dioxide molecules in air are excellent. Steady advancements of InGaAs material growth and devices have been made, primarily driven by the optoelectronics industry and the high speed electronics community. Most of this knowledge exists in the public domain and is readily accessible. Detectors at 1.7 micrometer cutoff can be ideally implemented as lattice matched In0.53Ga0.47As/InP PIN devices. PIN detectors require high material quality to reduce dark current and decrease bit errors. Additionally, the high intrinsic mobility of In0.53Ga0.47As enables very high speed transistors for monolithic microwave integrated circuit applications. The new active pixel sensor technology, a likely successor to charge coupled device, has been successfully developed for low noise, high signal transfer efficiency imaging circuits in silicon at JPL. The silicon active pixel sensor technology is being adapted to InGaAs/InP in this exploratory development effort. In this paper, a preliminary result of the monolithic multispectral (visible/near infrared/short-wavelength infrared) active pixel imaging sensor is discussed for application in transportable shipboard surveillance, night vision and emission spectroscopy.
Drain voltages of a test structure of dual gate MOS-JFET CCD (TIJ J032) were measured by an advanced laser scanner. The potential variation of the test structure at various source and gate voltages were measured by monitoring drain voltages with respect to the scanning laser position. In this report, a fine continuous, constant energy He-Ne laser beam of the Multipurpose Microelectronic Advanced Laser Scanner is utilized for the characterization of local variation of the sensor performance within the test structure.
Recent research results regarding the investigation of CMOS active pixel image sensors (APS) are reported. An investigation of various designs for the pixel, including photogate devices of various geometries and photodiode devices, has been performed. Optoelectronic performance including intrapixel photoresponse maps taken using a focused laser scanning apparatus are presented. Several imaging arrays have also been investigated. A 128 X 128 image sensor has been fabricated and characterized. Both p-well and n-well implementations have been explored. The demonstrated arrays use 2 micrometers CMOS design rules and have a 40 X 40 micrometers pixel pitch. Typical design fill-factor is 26%. Output sensitivity is 3.7 (mu) V/e- for the p-well devices and 6.5 (mu) V/e- for the n-well devices. Read noise is less than 40 e- rms for the baseline designs. Dynamic range has been measured to be over 71 dB using a 5 V supply voltage. The arrays are random access with TTL control signals. Results regarding on-chip suppression of fixed pattern noise also are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.