Space–time metasurfaces are promising candidates for breaking Lorentz reciprocity, which constrains light propagation in numerous practical applications. There is a substantial difference between carrier and modulation frequencies in space–time photonic metasurfaces that leads to negligible spatial pathway variation of light and weak nonreciprocal response. To surmount this obstacle, herein, the design principle of a high-quality-factor space–time gradient metasurface is demonstrated at the near-infrared regime that increases the lifetime of photons and allows for strong power isolation by lifting the adiabaticity of modulation. The all-dielectric metasurface consists of an array of silicon subwavelength gratings (SWGs) that are separated from distributed Bragg reflectors by a silica buffer. The resonant mode with ultrahigh quality-factor exceeding 104 is excited within the SWG, which is characterized as magnetic octupole and features strong field localization. The SWGs are configured as multijunction p–n layers, whose multigate biasing with time-varying waveforms enables modulation of carriers in space and time. The proposed nonreciprocal metasurface is exploited for free-space optical power isolation by virtue of modulation-induced phase shift. It is shown that under time reversal and by interchanging the directions of incident and observation ports, power isolation of ≈35 dB can be maintained between the two ports in free space.
Space-time metasurfaces are great candidates for breaking the Lorentz reciprocity thorough inducing the desired momentum for photonic transitions between two modes. However, the significant difference between the carrier and modulation frequencies in photonic metasurfaces leads to negligible spatial pathway variation of light at different sidebands and weak power isolation. To surmount this obstacle, herein the design principle of the high Q-factor space-time metasurface is demonstrated that increases the lifetime of photons such that the optical cycle becomes comparable with the modulation cycle and strong power isolation is maintained by lifting the adiabaticity of modulation. It is shown that under time-reversal and by the virtue of modulation induced phase shift strong free space power isolation of ≈35dB is achieved between the two arbitrary ports at near-infrared regime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.