In this paper we investigate limits of intensity and phase modulation formats used in optical communications. Non- Return to Zero, Return to Zero, Chirped Return to Zero, Carrier-Suppressed Return to Zero, Binary Phase Shift Keying, and Quadrature Phase Shift Keying including the most actual solutions, such as Polarization Division Multiplexing Quadrature Phase-Shift Keying, are investigated in terms of spectral efficiency, Bit Error Rate to find the limits for selected topologies and spectral grids in Dense Wavelength Division Multiplexing. Differential Phase-Shift Keying and mainly Differential Quadrature Phase-Shift Keying offer improvements in Bit Error Rate and transmission reach, among others. There are practical conclusions about transition from 10 Gb•s-1 to much higher bit rates. We study the potential increase of efficiency of Wavelength Division Multiplexing. We investigate the performance of Polarization Division Multiplexing Quadrature Phase-Shift Keying in very high speed optical systems that are promising even for terabit transmission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.