Two-dimensional (2D) materials are a class of materials with unique properties that have attracted significant attention in recent years. Unlike 3D materials, which have bulk properties that are governed by their crystal structure, 2D materials have properties that are strongly influenced by their size and shape. Graphene is perhaps the most well known 2D material due to its exceptional properties. Preparation of 2D materials based on organic molecules is a key-point to obtain devices with original photonics functionalities.
Herein, we focused on 2D materials based on perylene diimide derivatives. Our main goal was to prepare highly oriented 2D materials while also controlling molecular orientations and intermolecular electronic interactions. The consequences on photonics processes will be presented. Moreover, we report preliminary results on the combination of such materials with graphene. Such systems could constitute building blocks for future innovative metamaterials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.