ELP-OA ('Etoile Laser Polychromatique pour l'Optique Adaptative) aims at demonstrating the tip-tilt is measurable
with a Laser Guide Star (LGS) without any natural guide star. This allows a full sky coverage down to
visible wavelengths. ELP-OA is being setup at Observatoire de
Haute-Provence (OHP). To create a polychromatic
LGS, we use two pulsed dye lasers (at 569nm and 589nm) to produce a two-photons excitation of sodium
atoms in the mesosphere. The chromatism of the refractive index of the air yields a difference of the LGS
direction at different wavelengths. The position differences is proportionnal to the tip-tilt. Since the LGS isn't
sharp enough to give us a small enough error in the differential
tip-tilt, we use an interferometric projector to
improve the high spatial information in the laser spot. It requires an adaptive optics working down to 330nm.
This one is done by post-processing algorithms. Two two aperture projectors are used. Each one creates a
fringe-modulated LGS, and a better RMS error in the LGS position is obtained by measuring the information
in a normal direction with respect to the fringes. By using a two aperture projector, we also strongly decrease
the negative effect of the laser star elongation in the mesosphere, and the Rayleigh contribution near the LGS.
We propose a new optimal algorithm to retrieve the tip-tilt from simultaneous images at different wavelengths.
To enhance the RMS error of the measurements, we extend this algorithm to exploit the temporal correlation
of the turbulence.
We present interferometric near-infrared observations of the Luminous Blue Variable (LBV) η Car using the
Very Large Telescope Interferometer (VLTI) and the AMBER instrument of the European Southern Observatory
(ESO). A high spatial resolution of 5 mas (~11.5 AU) and a high spectral resolution R = λ/Δλ=1500 and
12000 were obtained. Some of the data was recorded using the fringe tracker FINITO. The observations were
obtained in the wavelength range around both the He I 2.059 μm and the Brγ 2.166 μm emission lines. The
AMBER interferograms allow the investigation of the wavelength dependence of η Car's visibility, wavelength-differential phase, and closure phase. If we fit Hillier et al. model visibilities to the observations, we obtain
50% encircled-energy diameters of 4.2, 6.5 and 9.6 mas in the 2.17 μm continuum, the He I, and the Brγ emission
lines, respectively. In the continuum, an elongation along a position angle of 120° ± 15° was derived from the
visibilities. The VLTI observations support theoretical models of anisotropic winds from fast-rotating, luminous
hot stars with enhanced high-velocity mass loss near the pole.
The VEGA spectrograph and polarimeter has been recently integrated on the visible beams of the CHARA
Array. With a spectral resolution up to 35000 and thanks to operation at visible wavelengths, VEGA brings
unique capabilities in terms of spatial and spectral resolution to the CHARA Array. We will present the main
characteristics of VEGA on CHARA, some results concerning the performance and a preliminary analysis of the
first science run.
We discuss our Polychromatic Laser Guide Star (PLGS) end-to-end model which relies on the 2-photon
excitation of sodium in the mesosphere. We then describe the status of the setup at Observatoire de Haute-
Provence of ELP-OA, the (PLGS) concept demonstrator. The PLGS aims at measuring the tilt from the LGS
without any NGS. Two dye laser chains locked at 589 and 569nm are required. These chains, are similar to those
of our PASS-2 experiment at Pierrelatte (1999). The two oscillators, preamplifiers and amplifiers are pumped
with NdYAGs. Both beams are phase modulated with a double sine function. If required, a third stage can
be added. It is expected that beams will deliver an output average power of 34W each, so that 22W will be
deposited into the mesosphere. If it is not enough, there is enough power supply to twofold it.
These lasers are being settled in the building of the OHP 1.52m telescope, partly at the first floor, and partly
at the top of the North pillar. Beams will propagate from there to the launch telescope attached to the 1.52m
one through a train of mirrors fixed with respect to the beam, so that incident angles are constant.
The coudé focus of the 1.52m telescope will be equipped with an adaptive optics device, closely derived from
the ONERA's BOA one. The Strehl ratio at 330nm for the differential tilt measurement channel is expected to
be 30-40% for r0 = 8 - 10cm. Telescope vibrations will be measured with pendular seismometers upgraded from Tokovinin's prototype. The full demonstrator is planned to run in 2010.
The Polychromatic Laser Guide Star aims at providing for the tilt measurement from a LGS without any
natural guide star. Thus it allows adaptive optics to provide us with a full sky coverage. This is critical in
particular to extend adaptive optics to the visible range, where isoplanatism is so small that the probability is
negligible to find a natural star to measure the tilt.
We report new results obtained within the framework of the Polychromatic LGS programme ELP-OA. Natural
stars have been used to mimic the PLGS, in order to check the feasibility of using the difference in the tilt at
two wavelengths to derive the tilt itself. We report results from the ATTILA experiment obtained at the 1.52 m
telescope at Observatoire de Haute-Provence. Tilts derived from the differential tilts are compared with direct
tilt measurements. The accuracy of the measurements is currently ≈ 1.5 Airy disk rms at 550 nm. These results
prove the feasibility of the Polychromatic Laser Guide Star programme ELP-OA. New algorithms based on
inverse problems under development within our programme would lead to smaller error bars by 1 magnitude,
as soon as they will run fast enough.
We describe the ELP-OA demonstrator which we are setting up at the same telescope, with a special emphasis
on the optimization of the excitation process, which definitely has to rely on the two-photon excitation of sodium
atoms in the mesosphere. We will describe the implementation at the telescope, including the projector device,
the focal instrumentation and the NdYAG pumped dye lasers.
Interferometry has been intensively done at long wavelengths, starting with the radio interferometers in the years 50 since it was easier to guide radio wavelengths in cable while keeping the phase information or using a local oscillator and a correlator to recombine "a posteriori" the beams over intercontinental distances. In the optical a lot of work as been done at IR and near-IR wavelengths since it was technically easier, or we must say, less difficult to recombine directly the optical beams since the coherence length is larger and the turbulence slower than at shorter wavelengths.
Therefore, the visible domain of the electromagnetic spectrum is not covered at the same level than near or mid infrared.
Some very nice and important results have been however obtained with the GI2T interferometer in south of France, the
Mark III interferometer on the Mount Wilson, USA, the NPOI array in Flagstaff, USA or the SUSI interferometer in Australia. We will present in this paper the science cases of a new but already existing and tested instrument: the
REGAIN focal instrument which was designed and built for the GI2T. This instrument, in his CHARA adaptation, called VEGA will open new fields in a wide range of Astrophysical topics only addressable in the visible domain. It will provide a spectral resolution up to 30000 within the spectral range 0.4-0.9 micron and a spatial resolution of less than 1mas for up to 4 telescopes in its X-lambda special configuration. A polarimetric device (SPIN) measuring simultaneously the polarization in 2 directions either circular or linear is also implemented in this instrument. Since VEGA was already tested on the sky on 1.5 m telescopes it is also very well suited for the 1m CHARA array and will only need minor adaptations for the injection of the CHARA beams. This paper will focus on some of the most promising science drivers only possible with this visible instrument.
We present the first interferometric NIR observations of the LBV η Carinae with high spectral resolution. The observations were carried out with three 8.2 m VLTI Unit Telescopes in the K-band. The raw data are spectrally dispersed interferograms obtained with spectral resolutions of 1,500 (MR-K mode) and 12,000 (HR-K mode). The observations were performed in the wavelength range around both the He I 2.059 μm and the Brγ 2.166 μm emission lines. The spectrally dispersed AMBER interferograms allow the investigation of the wavelength dependence of the visibility, differential phase, and closure phase of η Car. In the K-band continuum, a diameter of 4.0±0.2 mas (Gaussian FWHM) was measured for η Car's optically thick wind region, whereas the Brγ and He I emission line regions are larger. If we fit Hillier et al. model visibilities to the observed AMBER visibilities, we obtain 50% encircled-energy diameters of 4.3, 6.5 and 9.6 mas in the 2.17 μm continuum, the He I, and the Brγemission lines, respectively. In the continuum near the Brγ line, an elongation along a position angle of 128° ± 15° was found, consistent with previous VLTI/VINCI measurements. We find good agreement between the measured visibilities and the predictions of the radiative transfer model of Hillier et al. For the interpretation of the non-zero differential and closure phases measured within the Brγ line, we present a simple geometric model of an inclined, latitude-dependent wind zone. Our observations support theoretical models of anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass loss near the polar regions.
Since 1974 we develop photon-counting imaging devices for high angular resolution in the visible by means of speckle
and optical interferometry. Our last generation photon-counting camera, CPNG, has been built to benefit from the recent
advances in photonic commercial components. CPNG is an ICCD which uses electron multiplication in microchannel
plates to overcome the readout noise of fast CCD. We achieve optimal performances (sensitivity and resolution) by proper
optical design, by cooling of the first stage photocathode and by careful data processing. Thanks to the power of current
workstations, the processing of the CCD signal can be done by elaborated real-time software at frame rates as high as
262 Hz (72 Mpixel/s). The real-time software is in charge of detecting occurences of photon-events and estimating their
positions. We explain how our dedicated processing improves the detection sensitivity to reach an effective quantum
efficiency of 35%. We also show that our unbiased recentering of detected photons can avoid spurious high-energy events
and nevertheless achieve sub-pixel resolution. In practice, our resolution is limited by the size of a microchannel to about
2000×2000 effective pixels for our 516×532 CCD. The very good performances of CPNG open us new classes of objects
and have proven to be useful for other applications. For instance, several versions of our camera have been developped
(with different spectral ranges) to cover the common needs in Astronomy and biological imaging for an extremely low-light
level and fast imaging detector.
AMBER had first light in March 2004. The guaranteed time observations of the AMBER consortium (LAOG, MPIfR, OAA, OCA, UNSA) consists of 87 proposals ranging from cosmology, extragalactic studies, star formation, planetary system, late stages of stellar evolution to physical properties of stars. Some examples, AGN, evolved stars and hot stars are discussed in this paper.
CPng is a photon-counting camera currently under final development at Observatoire de Lyon, France and Observatoire de la Cote d Azur, France. Its goal is to provide quantum efficiency as high as possible at visible wavelengths up to 30-35 %under very low light level conditions and with a very short exposure time, approximately 4ms. Five CPng devices are under construction for astronomical and bio-medical imaging.
AMBER is the near-infrared instrument of the Very Large Telescope Interferometer (VLTI). With a spectral resolution up to 10000 in the
1.2-2.4 micron wavelength range, AMBER will offer the possibility to
combine 3 beams from the VLTI array either 8-m or 1.8m telescopes. The instrument has been designed to bring high precision measurement and high sensitivity and therefore opens the way to new domain of investigation in stellar physics and for the first time access to extragalactic sources. We show how the performance of the instrument can apply in these different astrophysical fields. We present the work of the Science Group and the AMBER consortium who defined precise astrophysical goals for the first years of operation.
We briefly recall the principle of the polychromatic laser guide star, which aims at providing measurements of the tilt of incoming wavefronts with a 100% sky coverage, We describe the main results of the feasibility study of this concept undertaken within the ELP-OA porgramme. We finally summarize our plans for a full demonstrator at Observatoire de Haute-Provence.
We describe the current status of the ELP-OA project in which we try to demonstrate in practice that it is possible to measure the tilt of a wave front using only a polychromatic laser guide star and no natural guide star. The first phase of ELP-OA, consisting of feasibility experiments, has recently been completed successfully. This paper provides an overview over the results of this first phase and over the continuation of the ELP-OA project.
Adaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS.
SPID aims at offering a high spectral resolution in both short-exposure (speckle imaging) and long-exposure (adaptive optics with partial compensation) modes. It offers an adjustable spectral resolution (from 60 up to 3000) in the range 400 - 750 nm. For differential observation of astronomical objects, SPID gives images in two spectral bandwidths at the same time. The width and the central wavelength of each bandwidth can be chosen independently. A high image quality is achieved thanks to a new design derived from a Courtes' monochromator. SPID also includes a wavefront sensor for post-compensation processing. A short-exposure mode allows us to achieve diffraction limited images but with a low signal-to-noise ratio. Depending on the object brightness and on the seeing quality, adaptive optics will allow us to improve significantly the signal-to-noise ratio and sometimes to observe a diffraction limited core in long-exposure mode. Depending on the scientific goal, the availability of the two modes will drive the best choice. The current status of SPID is presented together with first results obtained at CFHT in the short-exposure mode.
Adaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source, which is located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength of the observation, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. Several papers have addressed the problem of the sky coverage as a function of these parameters (see e.g.: Le Louarn et al). It turns out that the sky coverage is disastrously low in particular in the short (visible) wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (which is not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return- of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because approximately equals 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial or total sky coverage for the tilt, such as the dual adaptive optics concept, the elongation perspective method, or the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play.
KEYWORDS: Laser guide stars, Telescopes, Sodium, Stars, Global system for mobile communications, Oscillators, Wavefronts, Adaptive optics, Calibration, Photometry
We present results from measurements of the return flux from a polychromatic sodium laser guide star produced in Pierrelatte, France during the PASS-2 experiment. In the experiment, photometry of light at 330, 569, 589, and 589.6 nm emitted by mesospheric sodium under two-color laser excitation (569 and 589 nm) was performed. The variation of oscillator and laser configurations as well as simultaneous measurements of the atmospheric coherence length and the mesospheric sodium density permit a comparison of the results with atomic physics models. Using the results, we can determine the setup that produces the maximum return flux from the polychromatic laser guide star. The knowledge gained will be used to aid the ELP- OA project, which has as its goal the design, testing, and implementation of an adaptive optics system that uses a polychromatic laser guide star for wave front tilt measurements.
AMBER is the near-IR instrument for the VLTI, which will offer the possibility of combining two or three beams from either the 8 meter VLT main telescopes or the 1.8 meter auxiliary telescopes. With spectral dispersion up to 10,000 high visibility accuracy and the ability to obtain closure phases, AMBER will offer the means to perform high quality interferometric measurements in the 1 - 2.5 micron range initially, with later extensions to other portions of the spectrum. These design characteristics, coupled to the VLT interferometer potential, open up the access to investigation of several classes of objects, from stellar to extragalactic astronomy. We will review the projected performance in terms of sensitivity and angular resolution, and illustrate the potential applications in some key research areas. In particular, we will present the work of the AMBER Science Group, which is evaluating simulated data of source models and interferometric outputs for the purpose of defining the criteria for observations.
PASS-2 is an experiment designed to perform photometry of the polychromatic laser guide star. The tilt of an atmospherically distorted wave front coming from an astronomical object cannot be determined with a monochromatic laser guide star. If it is possible to produce a laser guide star that emits light at different wavelengths, however, the tilt can be determined from the measurable differences between the tilts at the different wavelengths. This is the concept of the polychromatic laser guide star. The PASS-2 experiment is a step towards an implementation of an adaptive optics system that uses a polychromatic laser guide star for the wave front tilt measurement. The goal of the experiment is to validate the feasibility of a polychromatic laser guide star adaptive optics system and to determine the laser parameters that produce the optimal return flux from the polychromatic laser guide star. To this end, the return flux from the polychromatic laser guide star at 330 and 589.6 nm will be measured as a function of laser parameters, atmospheric conditions, and the density of the mesospheric sodium layer.
We describe the principle of the polychromatic laser guide star (LGS) to recover the tilt information in imaging through the atmosphere. Observations using the AVLIS laser at the Lawrence Livermore National Lab are discussed in terms of returned flux in the ultraviolet. The major items of the program ELP-OA, starting now in France, are briefly reviewed, as well as the organization of the LGS R&D in Europe. Finally the conclusion outlines the possible improvements of the polychromatic LGS to allow us to reasonably implement it at large astronomical telescopes.
We have analytically modeled the performances of a natural guide star and laser guide star adaptive optics system. The performance in terms of Strehl radio in J, H and K bands are presented for two atmospheric models. We use this model to derive values of sky coverage for both systems following two methods. The first one is statistical and uses a model of our Galaxy to give the stellar densities and the AO model to compute the off-axis performances. The second model uses a cross correlation of catalogues of astrophysical objects and reference stars. This gives the number of objects of a given kind that can be observed with a given Strehl. We have also modeled the PSF of a laser guide star system using the modal decomposition of the cone effect and the effect of tilt isoplanatism. It can be seen that the PSF from an LGS system differs significantly from that of a conventional AO system.
We have studied the performances of natural and laser guide star adaptive optics systems for the ESO Very Large Telescope. Analytical formulae are used to derive the Strehl and FWHM of the PSF obtained with NGS and LGS, for two atmospheric models (20 % of the time and median). Sky coverage was computed with stellar densities, leading to a 75 % sky coverage at a Strehl of 0.3 in K band at average galactic coordinates with LGS and 8 % with NGS. A cross correlation approach was also used: reference stars were searched in the USNO-A catalogue around science objects found in the Veron-Cetty 96 and SIMBAD catalogues. This approach shows that the number of quasars with strehls greater than 0.2 is increased by a factor of 20 with LGS. In J band LGS is much less efficient, but in good atmospheric conditions, it allows to observe 720 quasars with Strehl greater than 0.2. In median conditions, this number drops to 0, mainly because of the cone effect. This leads to the the need for on-line atmospheric turbulence profile measurement and flexible scheduling of the observation, to optimize the LGS performances in J band.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.